let 5 be aset

Axiom or Extusion: A sex is completely defined by what the word are 81,2,33 = 83,2,13 = 81,3,23,13

E1, E133 7

Z se top all integers

a set of all on firmal

IR set of all real

IR set of all positive real

IF set of all negative real

ir non neg set of all nonnegative real

EXESIPS the set ofall x in S such that P is satisfied SX EZ 105 x 6273 the set of all non negative integers loss Mon 27

A CB Ail u subject of 0

A & B A is not a s-bser of B

(A = 0) & (B & A) Proper zubset

Ordered Pair

(0,6) = (c,1) if a=c and 6=d

(a,b) = { { 2, 3, 2, a, 63 }

Ordered n-tuples

(+1, +2,... FA)

Lortesian Product

1, +4, + ... + 6

A = { apple, borna, leron }

18: { gorlows, bear, can'el, low}

Aro Eapple, agricult)

(opple, bear)

(apple, come 1)

(apply decr)

(lenan, acturk)

(lena ben)

(leson, carel)

(lene ler) }

```
C 167164 ( V 0 ... )
         (lenon, canel)
         (lenn, dur ) }
  A = {0,1} -> bit string
  A = Ep, q, 13 such that length three containing two ormore p's
            P,P,P
           P, P,C
           P, P, 9,
           7, 0,0
           CL PP
           PCP
           149
 Relations
  + Ry = (41) ER
  + R4 = (4,1) BR
 A: Sorainst Mand Bis the colonain of R
    A= {2,7,4} and B= {6,8,10}
           (+, 9) ER news Met 1 ;) un integer
                R: EC2, 6) (2,8), (2,10), (3,6), (4,8)}
                        0 oran : A 2 6
Co 1 mm : B 2 8
Functions
         1. every une + of A is the first commo com ordered pair int
         7. 10 two total pais her the some P.7+ clang +
6 raphs: Two finite sets, V(b) vertices and E(6) edge,
Directed graph
```

Variables and Sets

Friday, August 26, 2022 1:56 PM

CS1200+Lec ture+1+H...

SQ Massau Decreets or Science and Technology Funer 651 No. 8000	4
Sections 1.1 and 1.2	
Variables	
The Language of Sets	
]
What Is Discrete Mathematics? Discrete mathematics describes processes that	
consist of a sequence of individual steps.	
This contrasts with calculus, which describes processes that change in a continuous fashion.	
	1
The Challenge of This Course • There are a lot of different topics	
- Look for the connections! Many topics require you to think differently	
This isn't scary – it's very useful! There is some background information we	
need that isn't very exciting. - Don't worry – it leads to more interesting stuff!	
some many — is reason to make macrosting state:	

My Prediction	
For many of you, this will be the most interesting – and enjoyable – mathematics course you've taken!	
	-
Variables	
A variable is a placeholder to use when you want to talk about something but either You imagine that it has one or more values but don't know precisely what they are	
Typical idea in algebra or programming or You want whatever you say about it to be equally true for all elements in a given set while avoiding	
ambiguity — Powerful idea in discrete math	
Example 1	
Use variables to rewrite the sentence more formally and remove ambiguity.	
If the cube of a real number is nonnegative, then it is nonnegative.	

Important Types of Mathematical Statements	
A universal statement says that a certain	
property is true for all elements in a set.	
Examples:	
All oranges are fruits. Every even number is divisible by 2.	
every even number is alvalue by 2.	
Important Types of Mathematical Statements	
A conditional statement says that if one thing is true then some other thing also must be true.	
Examples:	
If your lunch contains an orange, then it	
contains a fruit. If a number is divisible by 12, then the	
number is divisible by 4.	
Important Types of Mathematical Statements	
An existential statement says that a property holds for at least one element of a set.	
TOTAL TOTAL COLUMN TOTAL SECTION OF A SECTIO	
Examples:	
 There is a caffeinated beverage in the Coke machine. 	
 There is a number between 20 and 30 which is divisible by 12. 	

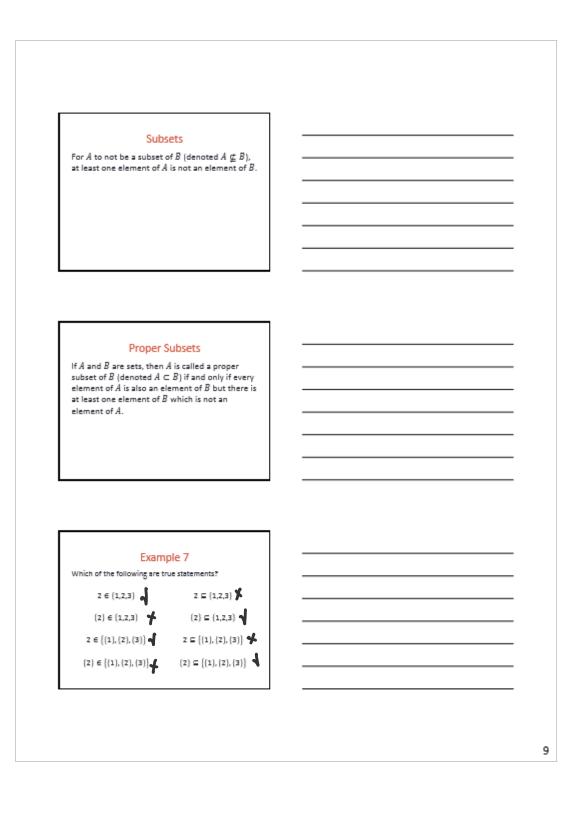
Combining Statement Types	
Universal Conditional Statements are both universal (applicable to every element in a set)	
and conditional (has an if-then component).	
Example:	
For every athlete T, if T is a quarterback, then	
T is a football player.	
Example 2	
Rewrite the universal conditional statement in a way which makes its conditional nature explicit	
but its universal nature implicit.	
For any other T. W.T. and the death of the T.	
For every athlete T, if T is a quarterback, then T is a football player.	
Example 3	
Rewrite the universal conditional statement in a	
way which makes its universal nature explicit but its conditional nature implicit.	
-	
For every athlete T, if T is a quarterback, then T is a football player.	

Combining Statement Types	
Universal Existential Statements are first	
universal (applicable to every element in a set) and then existential (asserting the existence of	
something).	
Example:	
Every football team has a tallest player.	
	1
Combining Statement Trans	
Combining Statement Types	
Existential universal statements first assert that an object exists and then indicate the object	
satisfies a certain property for all things of a certain kind.	
COLLEGE KING.	
Example:	
 There is a player who is at least as tall as every person on the football team. 	
•	
The Language of Sets	
Let S be a set.	
 x ∈ S means x is an element of S x ∈ S means x is not an element of S 	
- with means with nor an element of a	

5

Set-Roster Notation	
Set-roster notation involves writing all elements of a set between set brackets.	
Examples: {1,2,3,4,5}	
(1,2,3,, 50) (1,2,3,)	
The Axiom of Extension A set is completely defined by what its elements	
are. Important Implications:	
The order in which elements are listed does not matter.	
 Elements may be listed more than once without impacting the nature of the set. 	
	A .4 •
Example 4	nothing
What is the difference between the following sets?	
{1,2,3,4,5} (5,4,3,2,1)	
(1,3,5,2,3,4)	

Set-Builder Notation	
Let S denote a set and let P be a property that elements of S may or may not satisfy. Then, we can define a set as	
($x \in S P$)	
which means $% \left(\frac{1}{2}\right) =0$ "the set of all x in S such that P is satisfied".	
Example 6	
Write the following set using set-builder notation.	
The set of all nonnegative integers less than 27.	
8x 6 Z 1 0 5 x 6273	
	_
Subsets	
If A and B are sets, then A is called a subset of B (denoted $A \subseteq B$) if and only if every element of A is also an element of B .	
Formal definition: $A \subset B$ means that for every element x ,	
$A \subseteq B$ means that for every element x , if $x \in A$ then $x \in B$.	



Sets, Relations, Functions, Graphs

Friday, August 26, 2022 1:56 PM

CS1200+Lec ture+2+H...

SST Meson in Contracts or Science and Transplace Page 65 (Am. Reserv	
Sections 1.2, 1.3, and 1.4	
The Language of Sets,	
Relations and Functions, and Graphs	
Ordered Britis	
Ordered Pairs	
Given elements a and b , the symbol (a, b) denotes the ordered pair consisting of a and b	
together with the specification that a is the first element of the pair and b is the second element.	-
-	
Two ordered pairs (a, b) and (c, d) are equal if and only if $a = c$ and $b = d$.	
Ordered Pairs as Sets	
The ordered pair (a, b) is a set of the form	
$\{(a), (a, b)\}$	
If G and B are distinct, then the two sets are	
distinct and a is in both whereas b is only in the	
second set, allowing us to distinguish between a and b and imply an ordering.	

Ordered n -tuples The ordered n -tuple (x_1, x_2, \dots, x_n) consists of the (not necessarily distinct) elements X_1, X_2, \dots, X_n together with the defined ordering.	
consists of the (not necessarily distinct) elements $x_1, x_2,, x_n$ together with the defined	
elements X_1, X_2, \dots, X_n together with the defined	
Side High	
_	
Cartesian Products	
Given sets A_1, A_2, \dots, A_n , the Cartesian product $A_1 \times A_2 \times \dots \times A_n$	
of A_1, A_2, \dots, A_n is the set of all ordered n -tuples (a_1, a_2, \dots, a_n)	
where $a_1 \in A_2$, $a_2 \in A_2$,, $a_n \in A_n$.	
Example 1	
Let $A = \{apple, banana, lemon\}$ and $B = \{aardvark, bear, camel, deer\}$	
Find A × B	

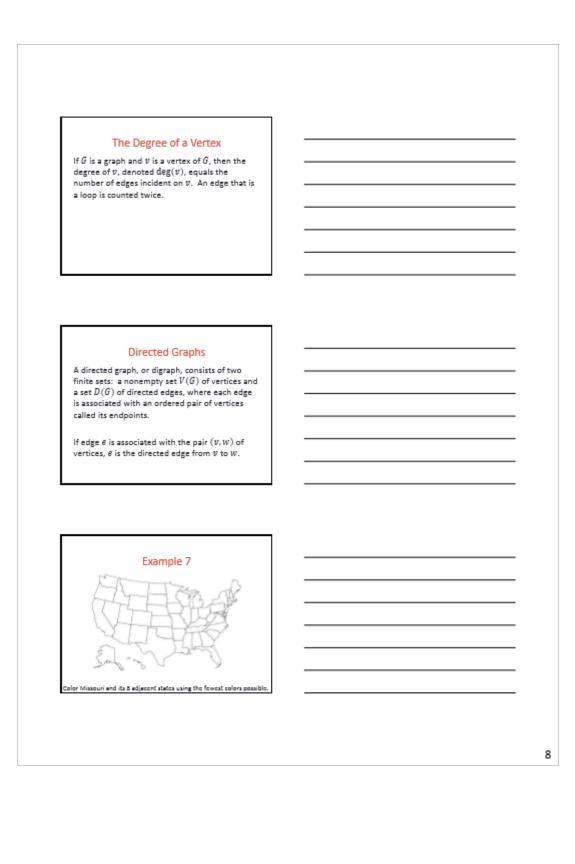
Strings	
Let n be a positive integer. Given a finite set A , a string of length n over A is an ordered n -tuple of elements of A written without parentheses or commas.	
The elements of \boldsymbol{A} are called the characters of the string.	
Strings	
The null string over A is defined to be the string with no characters, sometimes denoted λ , and is said to have length zero.	
If $A=\{0,1\}$, then a string over A is said to be a bit string.	
Example 2 Let $A = \{p, q, r\}$. List all strings of length three	
over A which contain two or more p 's.	

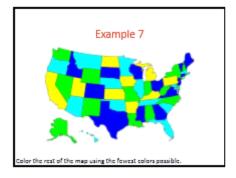
_

Functions (less formally)	
A relation F from A to B is a function if and only	
if 1. Every element of A is the first element of an	
ordered pair in F and	
 No two distinct ordered pairs in F have the same first element. 	
Example 3 (continued)	
Let $A = \{2,3,4\}$ and $B = \{6,8,10\}$ and define a relation R from A to B as follows:	
$(x, y) \in R$ means that $\frac{y}{x}$ is an integer.	
d) Is R ≥ function?	
Communic d	
Example 4 Define a relation C from R to R as follows:	
For any $(x, y) \in \mathbb{R} \times \mathbb{R}$, $(x, y) \in C$ means that $x^2 + y^2 = 1$.	
Is C a function? Explain.	

_

Graphs	
A graph G consists of two finite sets: a	
nonempty set $V(G)$ of vertices and a set $E(G)$ of edges, where each edge is associated with a	
set consisting of either one or two vertices	
called its endpoints.	
The correspondence from edges to endpoints is called the edge-endpoint function.	
Graphs	
An edge with just one endpoint is called a loop.	
Two or more distinct edges with the same set of	
endpoints are said to be parallel.	
An edge is said to connect its endpoints.	
Two vertices connected by an edge are adjacent.	
A vertex that is an endpoint of a loop is adjacent	
to itself.	
Graphs	
An edge is said to be incident on each of its	
endpoints.	
Two edges incident on the same endpoint are	
called adjacent.	
A vertex on which no edges are incident is called	
isolated.	





The Four-Color Theorem

Any geographic map, however complex, can be colored using just four colors such that no two adjacent regions have the same color.

9

A department wants to schedule finals so that no student has more than one exam on a given day. The vertices of the graph on the next slide show the courses being taken by more than one student, with an edge connecting two vertices if there is a student in both courses. Find a way to color the vertices of the graph so that no two adjacent vertices have the same color and explain how to use the result to schedule the finals.

Example 8

10

Logical Form and Equivalence

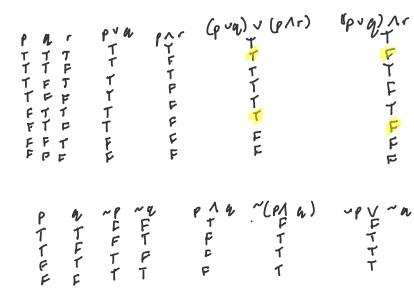
Friday, August 26, 2022 1:57 PM

CS1200+Lec ture+3+H...

SST MINISTER DESIGNED OF SCHOOL AND TRANSPORT AND ADDRESS.	
Section 2.1	
Logical Form and Logical Equivalence	
What Is Logic? Logic is the science of necessary inference.	
Logical analysis will not help you determine the intrinsic merit of an argument's content.	
Logical analysis will help you analyze an	
argument to determine whether the truth of the conclusion follows necessarily from the truth of	
the premises.	
Statements A statement is a sentence which is either true or	
false but not both.	

Example 1 Which of the following sentences are	
statements? a) Joe is a physics major b) $4^2 = 8$	
b) 4 ² = 8 c) x ² = 9	
Example 2	
Represent the common form of the argument using letters to stand for component sentences. If the program syntax is faulty, then the	
computer will generate an error message. If the computer generates an error message, then the program will not run.	
Therefore, if the program syntax is faulty, then the program will not run.	
Symbols in Logical Expressions	
∴ Therefore Λ And	
V Or Not (sometimes ¬ is used instead)	
But	
But Sometimes but is used in place of and when the second part of the sentence is somehow surprising.	
Sometimes but is used in place of and when the second part of the sentence is somehow	
Sometimes but is used in place of and when the second part of the sentence is somehow	
Sometimes but is used in place of and when the second part of the sentence is somehow	
Sometimes but is used in place of and when the second part of the sentence is somehow	
Sometimes but is used in place of and when the second part of the sentence is somehow surprising.	
Sometimes but is used in place of and when the second part of the sentence is somehow surprising. Example 2 Consider the following sentence: Steve has long arms but he is not tall. Translate from English to symbols, letting = Steve has long arms	1 A ~ †
Sometimes but is used in place of and when the second part of the sentence is somehow surprising. Example 2. Consider the following sentence: Steve has long arms but he is not tall. Translate from English to symbols, letting	
Sometimes but is used in place of and when the second part of the sentence is somehow surprising. Example 2 Consider the following sentence: Steve has long arms but he is not tall. Translate from English to symbols, letting = Steve has long arms	
Sometimes but is used in place of and when the second part of the sentence is somehow surprising. Example 2 Consider the following sentence: Steve has long arms but he is not tall. Translate from English to symbols, letting = Steve has long arms	
Sometimes but is used in place of and when the second part of the sentence is somehow surprising. Example 2 Consider the following sentence: Steve has long arms but he is not tall. Translate from English to symbols, letting 2 = Steve has long arms c = Steve is tall	
Sometimes but is used in place of and when the second part of the sentence is somehow surprising. Example 2. Consider the following sentence: Steve has long arms but he is not tall. Translate from English to symbols, letting = Steve has long arms = Steve is tall Neither-Nor	

	(0110) 45	
Example 3	Gvg) Nr	
Let p represent $1 < x$.		
Let q represent $x = 1$.		
Let r represent $x < 7$.		
Males de a fallacción inconstitue de a laciant		
Write the following inequality as a logical statement.		
1 ≤ x < 7		
Truth Values		
For sentences to be statements, they must have		
well-defined truth values – they must be either true or false.		
Our goal is to analyze the truth of compound		
statements based on the truth values of the statements which compose them.		
1		
B1		
Negation		
If p is a statement variable, the negation of p is $\sim p$ (read "not p ").		
, ,		
$\sim p$ has the opposite truth value from p .		
2 -2		
9 -9 7 9 1 7		
Conjunction		
Conjunction		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read " p and q ").		
If p and q are statement variables, the		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read " p and q "). $p \wedge q$ is true if and only if both p and q are true.		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read " p and q "). $p \wedge q$ is true if and only if both p and q are true.		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read p and q^n). $p \wedge q$ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true.		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read p and q^n). $p \wedge q$ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true.		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read p and q^n). $p \wedge q$ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true.		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read p and q^n). $p \wedge q$ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true.		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read p and q^n). $p \wedge q$ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true.		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read p and q^n). $p \wedge q$ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true.		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read p and q^n). $p \wedge q$ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true. $ p \wedge q $ is true if and only if both p and q are true.		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read p and q^n). $p \wedge q$ is true if and only if both p and q are true. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read p and q^n). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \wedge q$ (read p and q^n). $p \wedge q$ is true if and only if both p and q are true. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. $\begin{array}{c cccc} \hline p & q & q & q & q & q & q & q & q & q &$		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. The proof of true if and only if both p and q are true. Disjunction		
If p and q are statement variables, the conjunction of p and q is p \(\lambda \) (read "p and q"). p \(\lambda \) is true if and only if both p and q are true. \[\begin{array}{cccccccccccccccccccccccccccccccccccc		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. The proof of true if and only if both p and q are true. Disjunction		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. Position		
If p and q are statement variables, the conjunction of p and q is p \(\lambda \) (read "p and q"). p \(\lambda \) is true if and only if both p and q are true. \(\frac{y}{y} \) is true if and only if both p and q are true. \(\frac{y}{y} \) is true if and only if both p and q are true. \(\frac{y}{y} \) is \) is true if and only if both p and q are true. \(\frac{y}{y} \) is \) is true if and only if both p and q are false. \(\frac{y}{y} \) is false if and only if both p and q are false. \(\frac{y}{y} \) is \) is true if and only if both p and q are false. \(\frac{y}{y} \) is \) is \(\frac{y}{y} \) in \(\frac{y}{y} \) is \(\frac{y}{y} \) in \		
If p and q are statement variables, the conjunction of p and q is $p \land q$ (read " p and q "). $p \land q$ is true if and only if both p and q are true. Position		



PV CPA 8)

PTTFF

P19 T F F

F

Example 5

Determine whether the following statements are logically equivalent.

1. $(p \lor q) \lor (p \land r)$ 2. $(p \lor q) \land r$ De Morgan's Laws $\land (p \land q) \equiv \land p \lor \land q$ $\land (p \lor q) \equiv \land p \lor \land q$ $\land (p \lor q) \equiv \land p \lor \land q$ Example 6

Use De Morgan's Laws to write negations for each statement.

Jennifer is late to class or my watch is fast.

Hal is fat and Hal is happy.

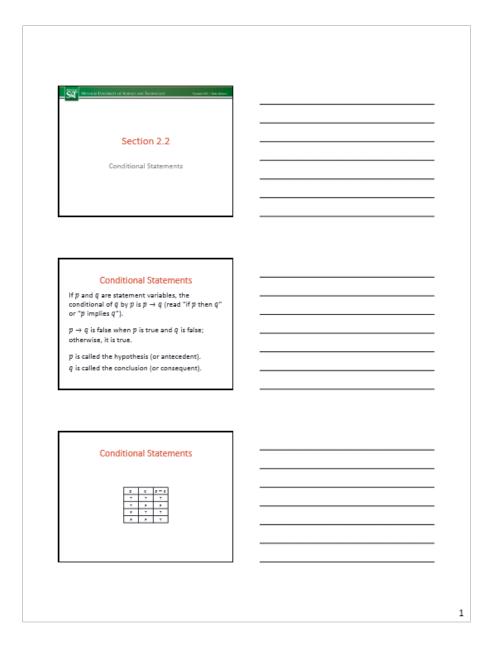
Tautologies A tautology is a statement form that is always true regardless of the truth values of the individual statements. Simple example: p ∨ ~p	P ~ P V ~ P T F T F T	
Contradictions A contradiction is a statement form that is always false regardless of the truth values of the individual statements. Simple example: $p \wedge \neg p$	P NP PANP T F E	
Example 7 Write a truth table for the statement form. Is it a tautology, a contradiction, or neither? $ (p \wedge \sim q) \wedge (\sim p \vee q) $	P P P P P P P P P P P P P P P P P P P	(p/~q) ~ (~pva)

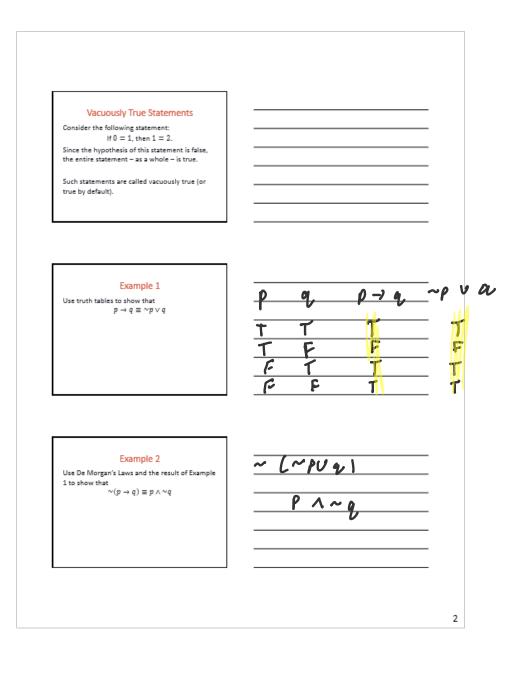
Discrete Mathematics Page 26

Conditional Statements

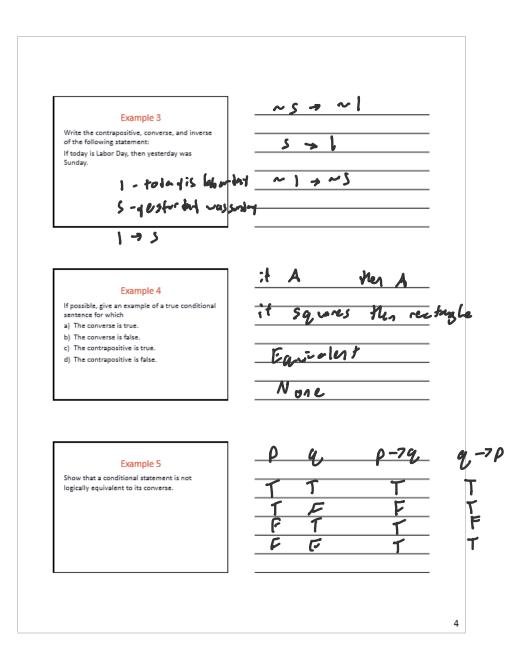
Monday, August 29, 2022 1:58 PM

CS1200+Lec ture+4+H...





The Negation of Conditional Statements	
The negation of "if p then q " is logically equivalent to " p and not q ."	
Warning!	
The negation of an if-then statement does not start with the word if!	
	_
Contrapositive vs. Converse	
The contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$. A conditional statement and its contrapositive	
are logically equivalent.	
The converse of $p \rightarrow q$ is $q \rightarrow p$. A conditional statement and its converse	
are <u>not</u> logically equivalent (although, in some cases, the converse may be true when the conditional is true).	
	<u> </u>
Inverse The inverse of $p \rightarrow q$ is $\sim p \rightarrow \sim q$.	
A conditional statement and its inverse are <u>not</u> logically equivalent.	
The converse and inverse of a conditional statement are logically equivalent to each other.	
section are regions equivalent to each other.	



Only If	
If p and q are statement variables, p only if q means "if not q then not p " or, equivalently (by contraposition) "if p then q ."	
Biconditional Statements	
If p and q are statement variables, the biconditional of p and q is $p \leftrightarrow q$, read	
"p if and only if q " and sometimes abbreviated as "p iff q ."	
$p \leftrightarrow q$ is true if p and q have the same truth value and false if p and q have opposite truth values.	
vants.	
]
Biconditional Statements	
T T T T T T T F F	
7 7 7	

ptop ~pva ~q vp (~pva), (~q vp) Example 5 Use truth tables to show that $p \leftrightarrow q \equiv (\sim p \vee q) \wedge (\sim q \vee p)$ Order of Operations for Logical Operators 1. Evaluate negations first. 2. Evaluate ∧ and ∨ second. When both are present, parentheses may be needed. 3. Evaluate \rightarrow and \leftrightarrow third. When both are present, parentheses may be needed. CP-14) -7P (Cp-12) -7P) -7P Example 6 Determine whether each of the following is a tautology, a contradiction, or neither. a) $((p \rightarrow q) \rightarrow p) \rightarrow p$ b) $p \wedge (p \leftrightarrow q) \wedge \sim q$ F P 6 9 6 T F 1 **Necessary and Sufficient Conditions** Let r and s be statements. τ is a sufficient condition for s means $\tau \to s$. r is a necessary condition for s means $\sim r \rightarrow \sim s$. au is a necessary and sufficient condition for s $\mathsf{means}\, r \leftrightarrow s.$

Clarifying Remarks

In logic, a hypothesis and conclusion are not required to have related subject matters.

Simple example: If Albert Pujols is a baseball player, then Brett Favre is a football player. not error noss. connect error = not c c = not er

Brett Favre is a football player.	
Clarifying Remarks	
In informal language, simple conditional	
statements are often interpreted as	
biconditionals.	
Simple example:	
If you eat your dinner, you will get dessert.	

Valid and Invalid Arguments

Wednesday, August 31, 2022 2:00 PM

CS1200+Lec ture+5+H...

Testing an Argument Form for Validity 1. Identify the premises and conclusion of the argument form. 2. Construct a truth table showing the truth values of all premises. 3. Identify all rows of the truth table in which all premises are true. These rows are called critical rows. 4. Determine the truth value of the conclusion for all critical rows. Testing an Argument Form for Validity 5. If there is a critical row in which the conclusion is false, the argument form is invalid. If the conclusion in every critical row is true, then the argument form is valid.

Example 1
Use a truth table to test the argument for

validity.

 $p \rightarrow q$ $\sim q \vee r$ $\therefore r$

P	P		10	NA	1734	Nasr	I not false
P 79	T	1	F	F	7	F	o valil
	1	E	1	†	F	T	
<u>r</u>	F	7	7	F	т	T	
	F	7	F	F	T	1	
	F =	F	F	†	7	7	
				2			•

Example 2 Use a truth table to test the argument for validity. $p \lor q$ $p \to \sim q$ $p \to r$ $\therefore r$	F	7 T T T T	PVQ. T T T T	p-	7 2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	FTFTTT	7474757	Inv
Syllogisms A syllogism is an argument form consisting of two premises and a conclusion. The first premise is called the major premise. The second premise is called the minor premise.	F C 1	F T F F	F }		۲	1) F	
Famous Syllogisms Modus Ponens Modus Tollens If p then q. If p then q. p -q ∴ q ∴ -p								
				3				

Example 3	
Recall that an argument is valid whenever its form is valid. Is the following argument valid?	
If smoking is healthy, then my physician will tell me to smoke.	
Smoking is healthy. Therefore, my physician will tell me to smoke.	
Example 4	
Use modus ponens or modus tollens to fill in the blank in the following argument so that it becomes a valid inference.	
If logic is easy, then you would not need this class.	
You need this class. Therefore,	
Rules of Inference	
A rule of inference is a form of argument that is valid.	
Examples: Modus Ponens	
Modus Tollens	

Generalization	
The following argument forms are valid.	
p q	
p ∨ q p ∨ q	
Specialization	
The following argument forms are valid.	
$p \wedge q$ $p \wedge q$	
∴ p ∴ q	
	\neg
Elimination	
The following argument forms are valid.	
pvq pvq	
~q ~p	
p q	

Transitivity The following argument form is valid. $p \to q$ $q \to r$ $\therefore p \to r$	
	1
Proof by Division into Cases The following argument form is valid. $p\vee q$ $p\rightarrow r$ $q\rightarrow r$ $\sim r$	
Fallacies A fallacy is an error in reasoning that results in an invalid argument.	
Common fallacies: Using ambiguous premises Circular reasoning (assuming what you're trying to prove) Jumping to a conclusion Converse Error	
Inverse Error	

Inverse Error The following argument form is <u>not</u> valid. $p \to q$ $\sim p$ $\sim p$	
-	
Example 5 Determine whether the argument is valid, exhibits the converse error, or exhibits the inverse error. If Jules solved this problem correctly, then Jules obtained the answer 2. Jules obtained the answer 2. Jules solved this problem correctly.	

Example 6	
Determine whether the argument is valid, exhibits the converse error, or exhibits the inverse error.	
If I play too many games, I won't finish my homework.	
If I don't finish my homework, I won't do well on the exam tomorrow. If I play too many games, I won't do well on the exam tomorrow.	
Example 7	
Determine whether the argument is valid, exhibits the converse error, or exhibits the inverse error.	
If this number is larger than 2, then its square is larger than 4. This number is not larger than 2.	
The square of this number is not larger than 4.	
Sound Arguments	
An argument is called sound iff it is valid and all its premises are true. An argument that is not sound is called unsound.	
Remember that validity is a property of an argument form.	
We can only be sure that the conclusion of an argument is true when we know the argument is sound.	

Example 3 (revisited) The following argument is valid. Is it sound? If smoking is healthy, then my physician will tell me to smoke. Smoking is healthy. Therefore, my physician will tell me to smoke. Contradiction Rule If you can show that the supposition that statement p is false leads logically to a contradiction, then you can conclude that p is true. Example 8 Show that the contradiction rule is valid by showing the following argument form is valid. $^{\sim}p\rightarrow\mathbf{c}$ where \mathbf{c} is a contradiction. .. p 9

Predicates and Quantified Statements I

Friday, September 2, 2022 1:57 PM

New Room: Bertelsnever 8-10

CS1200+Lec ture+6+H...

Meson as they team or Science and Transmister former 60 ; No. House	
_	
Section 3.1	
Predicates and Quantified Statements I	
Predicates	
A predicate is a sentence which contains a finite number of variables and becomes a statement	
when specific values are substituted for the variables.	
The domain of a predicate variable is the set of	
all values that may be substituted in place of the variable.	
Predicates	
If $P(x)$ is a predicate and x has domain D , the truth set of $P(x)$ is the set of all elements of D	
that make $P(x)$ true when they are substituted for x .	
The truth set of $P(x)$ is denoted	
$\{x \in D P(x)\}$	

	7
Example 1	-
Let $B(x)$ be the predicate " $-10 \le x < 10$."	
Find the truth set of $B(x)$ for each of the following domains.	
a) Z b) Z ⁺	
c) The set of all even integers.	
-,	
	_
Quantifiers	
Quantifiers are words that refer to quantities such as "some" or "all" and indicate for how	
many elements a given predicate is true.	
Quantifiers provide one way to obtain statements from predicates.	
	٦
The Universal Quantifier	
∀ is the universal quantifier	
∀ is typically read as "for all."	
Other typical readings:	
"for every," "for each," "for any," "given any"	

Universal Statements				
Let $Q(x)$ be a predicate and D the domain of x . A universal statement is a statement of the form $\forall x \in D, Q(x)$				
It is defined to be true if and only if $Q(x)$ is true for each individual $x \in D$.				
A value x for which $Q(x)$ is false is called a counterexample to the universal statement.				
Example 2]			
Which of the following are equivalent ways of expressing the statement $\forall n \in \mathbb{Z}$, if n^2 is even then n is even.				
a) All integers have even squares and are even. b) Given any integer whose square is even, that integer is itself even.	/ J			
c) For all integers, there are some whose square is even.	$\rfloor_{m{\mathcal{L}}}$			
Example 2		_		
Which of the following are equivalent ways of expressing the statement $\forall n \in \mathbb{Z}$. if n^2 is even then n is even.				
	1			
 d) Any integer with an even square is even. e) If the square of an integer is even, then that integer is even. 	1			
f) All even integers have even squares.	X			

Example 3	
Find a counterexample to show that the statement	
$\forall x,y\in\mathbb{R},\sqrt{x+y}=\sqrt{x}+\sqrt{y}$	
is false.	
The Existential Quantifier	
3 is the explosion quantifier 3 is typically read as "there exists."	
Other typical readings:	
"there is a," "we can find a," "for some," "there is at least one," "for at least one"	
there is at least one, for at least one	
Existential Statements	
Let $Q(x)$ be a predicate and D the domain of x . An existential statement is a statement of the form	
$\exists x \in D \text{ such that } Q(x)$	
It is defined to be true if and only if $Q(x)$ is true	
for at least one $x \in D$.	

Example 4 Which of the following are equivalent ways of expressing the statement $\exists x \in \mathbb{R} \text{ such that } x^2 = 2$			
 a) The square of each real number is 2. b) Some real numbers have square 2. c) The number x has square 2, for some real number x. 	x 1 ,		
	_		
Example 4 Which of the following are equivalent ways of expressing the statement $\exists x \in \mathbb{R}$ such that $x^2 = 2$			
 d) If x is a real number, then x² = 2. e) Some real number has square 2. f) There is at least one real number whose square is 2. 	1 14		
	_		
Formal vs. Informal Language There is often more than one way we can informally state a formal statement.			
Formally, we want universal and existential quantifiers at the beginning of a sentence. Informally, we often place them at the end.			

Example 5	
Rewrite each statement so that the quantifier trails the rest of the sentence.	
 a) For any isosceles triangle T, two angles of T are equal. 	
 b) There exists a continuous function f such that f is not differentiable. 	
Universal Conditional Statements	
One particularly important statement form is the universal conditional statement	
$\exists x$, if $P(x)$ then $Q(x)$	
Example 6 Rewrite the statement Some questions are easy	
in the following two forms:	
2) 3x such that \(\frac{\lambda_{\text{ingular}} \text{tise} \(\text{cas}\)	

Example 7	
Rewrite the statement Every computer science student needs to take	
data structures in the following two forms:	
11 + 4CS then Xtake data structures	
2) w Cs xx take (Antholic 27 Minen)	
	-
	\neg
Implicit Quantification	
Often, the universality or existentiality of a	
statement is implied, not explicitly written.	
	
Example 8 Rewrite the statement as either an explicitly	
existential or explicitly universal statement.	
a) The sum of the angles of a triangle is 180°.	For all fringles T, the sun of the ages of T
 b) The number 12 is divisible by at least two primes. 	

pose			
truth			
	very truth ((x))	very truth $Q(x)$.	very truth $Q(x)$.

Predicates and Quantified Statements II

Wednesday, September 7, 2022 2:00 PM

CS1200+Lec ture+7+H...

SST Message University of Science and Technology (Section 60) Not Reco	
Section 3.2	
Predicates and Quantified Statements II	
]
Negation of a Universal Statement The negation of a statement of the form	
$\forall x \in D, Q(x)$ is logically equivalent to a statement of the form	
$\exists x \in \mathcal{D} \text{ such that } ^{\sim} \mathcal{Q}(x).$	
Negation of an Existential Statement	
The negation of a statement of the form $\exists x \in D$ such that $Q(x)$	
is logically equivalent to a statement of the form $\forall x \in \mathcal{D}, {\sim} Q(x).$	

Example 1	
Write formal and informal negations of the	
following statements. a) 3 a movie m such that m is over 6 hours	
long. b) All real numbers are positive, negative, or	
zero.	
Negation of a Universal Conditional	
The negation of a statement of the form $\forall x$, if $P(x)$ then $Q(x)$	
is logically equivalent to a statement of the form $\exists x \text{ such that } P(x) \text{ and } \sim Q(x).$	
Example 2	
Write a formal and an informal negation for the following statement.	
$\forall n \in \mathbb{Z}$, if n is prime then n is odd or $n = 2$.	

Example 3	
Determine whether the proposed negation is correct. If it is not, write a correct negation.	
Statement: For every integer n , if n^2 is even then n is even.	
Proposed negation: For every integer π , if π^2 is even then π is not even.	
Vacuous Truth of Universal Statements	
In general, a statement of the form $\forall x \in D$, if $P(x)$ then $Q(x)$	
is called vacuously true (or true by default) iff $P(x)$ is false for every x in D .	
"In General"	
In ordinary language, the words "in general" mean that something is usually, but not always, the case.	
In mathematics, the words "in general" mean	
that something is always true.	

SQ Message they seem or Scancer and Transmitted Femore 6% Aut. Record	
Section 3.3	
Statements with Multiple Quantifiers	
Statements with Multiple Quantifiers	
When a statement contains more than one kind	
of quantifier, we imagine the actions suggested	
by the quantifiers as being performed in the order in which the quantifiers occur.	
Canada and a solah hidulah a Canada a	
Statements with Multiple Quantifiers	
For a statement of the form $\forall x \in D, \exists y \in E \text{ such that } x \text{ and } y \text{ satisfy } P(x, y)$	
to be true, you must be able to meet this challenge:	
 Imagine that someone is allowed to choose any element from D and give it to you. Call it x. 	
2. Now that you have α , your challenge is to find an	
element $y \in E$ so that the chosen x and found y together satisfy the property $P(x, y)$.	
Note that you do not have to select y until after x is	
chosen, allowing you to pick a different y for each x.	

4

Example 5	
Rewrite the statement formally using quantifiers and variables. Then, write a negation for the statement.	
There is a program that gives the correct answer to every question which is posed to it.	
Changing the Order of Quantifiers	
In a statement containing both \forall and \exists , changing the order of the quantifiers can significantly change the meaning of the statement.	
If one quantifier immediately follows another of the same type (i.e. both are ∀ or both are ∃), then the order does not affect the meaning.	
Example 6 Write a new statement by changing the order of the quantifiers. Identify which statement is true: the original statement, the version with	
interchanged quantifiers, neither, or both.	
$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x < y.$	
Then, rewrite the statement in English.	

Arguments with Quantified Statements

Friday, September 9, 2022 1:58 PM

CS1200+Lec ture+8+H...

SAT Messas University of Scatters and Technology Fasser 40: No. research	
	
Section 3.4	
Arguments with	
Quantified Statements	
Universal Instantiation	
If a property is true of everything in a set, then it	
is true of any particular thing in the set.	
Recall: Famous Arguments	
Modus Ponens Modus Tollens If p then q. If p then q.	
p −q ∴ q ∴ −p	

	1
Universal Modus Ponens	
Formal version: Informal version:	
$\forall x \text{ if } P(x) \text{ then } Q(x).$ If $x \text{ makes } P(x) \text{ true,}$ then $x \text{ makes } Q(x) \text{ true.}$	
P(a) for a particular a a makes $P(x)$ true.	
$\therefore Q(a)$ $\therefore a \text{ makes } Q(x) \text{ true.}$	
2(0)	
	_
Example 1	
Use universal modus ponens to fill in a valid	
conclusion for the argument.	
If an integer n equals $2k$ and k is an integer,	
then n is even. 0 equals $2 \cdot 0$ and 0 is an integer.	
	1
Heimer Mander Bernerine Bernf	
Universal Modus Ponens in a Proof	
Goal: Prove that the sum of any two even integers is even.	
-	
Background definition:	
An integer is even iff it equals twice some integer.	

Universal Modus Ponens in a Proof	
Suppose m and n are particular but	
arbitrarily chosen even integers.	
 Then, m = 2r for some integer r and n = 2s for some integer s. 	
3. Hence,	
m + n = 2r + 2s = $2(r + s)$	
4. Since $(r+s)$ is an integer, $2(r+s)$ is even.	
 Thus, m + n is even. 	
Universal Modus Ponens in a Proof	
Where did we use Universal Modus Ponens?	
Step 2:	
If an integer is even, then it equals twice some	
integer.	
m is a particular even integer. ∴ m equals twice some integer, say r.	
(Similar argument with 11 and 5.)	
Universal Modus Ponens in a Proof	
Where did we use Universal Modus Ponens?	
The second secon	
Step 4:	
For all u and v, if u and v are integers, then $u + v$ is an integer.	
T and S are two particular integers.	
∴ r + s is an integer	

Universal Modus Ponens in a Proof	
Where did we use Universal Modus Ponens?	
We also used it on step 3, and we used it a second time on step 4.	
second time on step 4.	
Universal Modus Tollens	
Formal version: Informal version: $\forall x \text{ if } P(x) \text{ then } Q(x).$ If $x \text{ makes } P(x) \text{ true,}$	
then x makes $Q(x)$ true. -Q(a) for a particular a does not make $Q(x)$ true.	
$\therefore -P(a)$ $\therefore a$ does not make $P(x)$ true.	
Example 2 Use universal modus tollens to fill in a valid	
conclusion for the argument.	
All irrational numbers are real numbers.	
is not a real number.	

4

Recall: Valid and Sound Arguments An argument form is said to be valid if there is no possible way for the conclusion to be false when all premises of the argument form are An argument is called valid iff its form is valid. An argument is called sound iff its form is valid and its premises are true. 6000 Example 3 College 1000 Indicate whether the argument is valid or invalid. Support your answer by drawing a food diagram. No college cafeteria food is good. No good food is wasted. .. No college cafeteria food is wasted. waste Inval: 8 Example 4 Indicate whether the argument is valid or invalid. Support your answer by drawing a diagram. No vegetarians eat meat. All vegans are vegetarian. ∴ No vegans eat meat. Valid

Converse Error (d	quantified form)		
	Informal version:		
Formal version: $\forall x \text{ if } P(x) \text{ then } Q(x).$	Informal version: If x makes $P(x)$ true, then x makes $Q(x)$ true.		
$\mathcal{Q}(\alpha)$ for a particular α	a makes $\mathcal{Q}(x)$ true.		
$\stackrel{.}{\cdot} F(a)$	∴ a makes P(x) true.		
Note that the converse error	has an invalid conclusion.		
Inverse Error (q	uantified form)		
Formal version: $\forall x \text{ if } P(x) \text{ then } Q(x).$	Informal version: If x makes $P(x)$ true,		
-P(a) for a particular a	then x makes $Q(x)$ true. a does not make $P(x)$ true.		
∴ -Q(a)	\therefore a does not make $Q(x)$ true		
•	•		
Note that the inverse error h	as an invalid conclusion.		
Exam	ple 5	Invalid	
Determine whether the a invalid.	argument is valid or	Inex	
If a graph has no edges, t degree zero.	hen it has a vertex of		
This graph has at least on	-		
∴ This graph does not have zero.	ve a vertex or degree		

Determine whether the argument is valid or	Va (;)
invalid.	
For every student X, if X studies discrete math, then X is good at logic.	
Susan studies discrete mathematics.	
∴ Susan is good at logic.	
	Enval:1
Example 7	
Determine whether the argument is valid or invalid.	Lonvice
All cheaters sit in the back row.	
Monty sits in the back row. - Monty is a cheater.	
- money is a circuit.	
Example 8	
Determine whether the argument is valid or invalid.	Sovelil
All students who failed Prof. Simpson's class are in a fraternity.	
Phillip is in a fraternity.	
- Phillip failed Prof. Simpson's class.	

Converse Errors in Real Life	
Suppose Abigail believes the following:	
For every x , if x has Covid-19, x has a fever,	
cough, and shortness of breath. Then, Abigail sits next to Steve in class, and	
Steve is coughing and breathing heavily. Abigail decides Steve must have Covid-19.	
	=
Converse Errors in Real Life Suppose Dr. Smith knows the following:	
For every x, if x has Covid-19, x has a fever,	
cough, and shortness of breath. Then, a patient comes to Dr. Smith's office with	
a fever, cough, and is breathing heavily.	
Dr. Smith suspects the patient has Covid-19 and then performs appropriate testing.	
This form of reasoning is sometimes called	
abduction.	

Direct Proof And Counterexample I

Monday, September 12, 2022 2:01 PM

CS1200+Lec ture+9+H...

	•
SST Message University or Scanical and Transmission Femore 4% (No. Record	
Section 4.1	
Direct Proof and Counterexample I:	
Introduction	
]
Why Is Proof Important?	
Writing a proof forces us to become aware of weaknesses in our arguments and in the unconscious assumptions we have made.	
-	
In a proof, we must say exactly what we mean and mean exactly what we say!	
	1
Are We Doing Insanely Hard Proofs?	
No!	
Most proofs we do will assume you are familiar	
with the basic laws of algebra.	

Even and Odd Integers	
An integer n is even iff $n = 2k$ for some integer k .	
An integer n is odd iff $n=2k+1$ for some integer k .	
Example 1	
Prove that -403 is odd.	
Prime and Composite Integers An integer n > 1 is prime iff for all positive	
integers r and s , if $n=rs$ then either $r=1$ and $s=n$ or $r=n$ and $s=1$.	
An integer $n>1$ is composite iff there exist positive integers r and s such that $n=rs$ and	
1 < r < n and 1 < s < n .	

2

Proving Existential Statements	
A statement of the form	
$\exists x \in \mathcal{D}$ such that $Q(x)$	
is true iff $Q(x)$ is true for at least one x in D .	
Constructive proof method #1:	
Find an x in D that makes $Q(x)$ true.	
Perfect Squares	
An integer n is called a perfect square iff $n = k^2$	
for some integer k.	
Emmelo 2	
Example 2 Prove that there is a perfect square that can be	
written as the sum of two other perfect squares.	

Proving Existential Statements	
A statement of the form $\exists x \in D$ such that $Q(x)$	
is true iff $Q(x)$ is true for at least one x in D .	
Constructive proof method #2:	
Give a set of directions for how to find an x in D that makes $Q(x)$ true.	
Example 3	
Prove that there are distinct integers m and n	
such that $\frac{1}{m} + \frac{1}{n}$ is an integer	
	-
Proving Existential Statements A statement of the form	
$\exists x \in D$ such that $Q(x)$ is true iff $Q(x)$ is true for at least one x in D .	
Nonconstructive proof method #1: Show that the existence of a value x that makes	
Q(x) true is guaranteed by an axiom or previously proven theorem.	

Proving Existential Statements	
A statement of the form	
$\exists x \in D \text{ such that } Q(x)$	
is true iff $Q(x)$ is true for at least one x in D .	
Nonconstructive proof method #2:	
Show that the assumption that no such value of	
X exists leads logically to a contradiction.	
Disproving Universal Statements	
To disprove a statement of the form $\forall x \in D$, if $P(x)$ then $Q(x)$	
find a value of $x \in D$ for which $P(x)$ is true and	
Q(x) is false. Such an x is called a counterexample.	
Example 4	
Disprove the statement by finding a	
counterexample.	
For all integers m and n , if $2m + n$ is odd then	
m and n are both odd.	

Proving Universal Statements	
To prove a statement of the form $\forall x \in D$, if $P(x)$ then $Q(x)$	
it may be possible to check the statement for every possible element x. This will only work	
when either D is a finite (and relatively small) set or when only a finite (and relatively small)	
number of elements satisfy $P(x)$.	
	1
Example 5	
Prove the statement.	
For each integer n with $1 \le n \le 10$, $n^2 - n + 11$ is a prime number.	
	1
Generalizing from the Generic Particular	
To show that every element of a set satisfies a certain property, suppose x is a particular but	
arbitrarily chosen element of the set and show that X satisfies the property.	
This is the basis for the method of direct proof.	

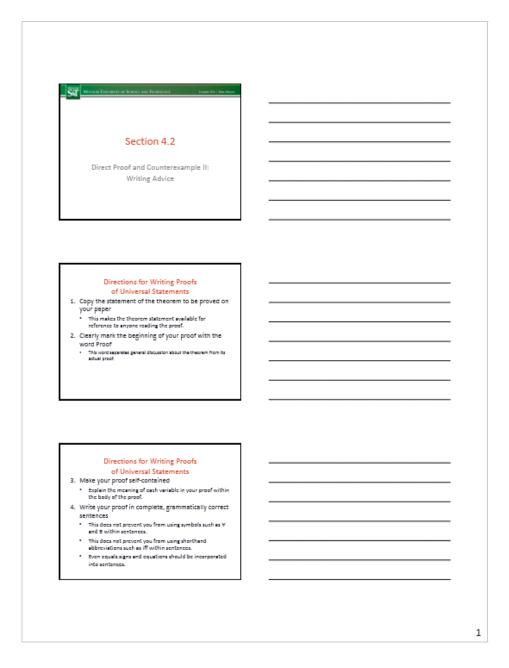
The Method of Direct Proof	
Express the statement to be proved in the form	
$\forall x \in D$, if $P(x)$ then $Q(x)$	
 Start the proof by supposing X is a particular but arbitrarily chosen element of D for which 	
the hypothesis $P(x)$ is true. 3. Show that the conclusion $Q(x)$ is true by	
using definitions, previously established	
results, and the rules of logical inference.	
Seconds 6	
Example 6	
Prove the following theorem.	
The sum of any two odd integers is even.	
	1
Existential Instantiation	
If the existence of a certain kind of object is	
assumed or has been deduced, then it can be given a name provided that name is not	
currently being used to refer to something else	
in the same discussion.	

Example 7	
Prove the following theorem.	
Whenever n is an odd integer, $5n^2 + 7$ is even.	

Direct Proof and Counterexample II

Wednesday, September 14, 2022 1:59 PM

CS1200+Lec ture+10+...



Directions for Writing Proofs of Universal Statements 5. Keep your reader informed about the status of each statement in your proof Make sure it is clear to the reader whether something in the proof has already been established, is assumed, or is still to be deduced. 6. Give a reason for each assertion in your proof Every assertion in each assertion in your proof Every assertion should come directly from a hypothesis of the theorem being proved, follow from the definition of a term, be a result obtained earlier in the proof, or be a mathematical result that has previously been established. The appetition cannot be a previously been established. Directions for Writing Proofs of Universal Statements T. Include "fittle words and phrases" that make the logic of your arguments clear Starting a sentence with because or since and giving the reason immediately is sometimes preferable to starting a sentence withou, then, Univ., dence, or therefore and stating the reason at the end of the sentence. If a sericence expresses a new thought or fact that does not follow as an immediate consequence of a preceding statement, using observe that, recall that, or note that might be useful. Directions for Writing Proofs of Universal Statements Display equations and inequalities We typically prafer placing equations and inequalities on separate lines to increase readability. Make the end of the proof clear to the reader Traditional Q.E.D. Latin abtraviation for quad and demonstratum, meaning with the case to be demonstrated. In print:

Variations Among Proofs	
It is exceedingly rare for two proofs of an identical statement to be identical when written	
by two different people.	
This does not mean one of them is wrong.	
This also does not mean both of them are right.	
	1
Communic 4	
Example 1	
Prove the statement. Use only the definitions of the terms. Do not use any previously	
established properties of even/odd integers in	
your proof.	
The difference of any even integer minus any	
odd integer is odd.	
Common Mistakes	
Arguing from examples	
Just because something is true in one case or a	
handful of cases does not mean it is true in general.	
2. Using the same letter to mean two different	
things	
 For example, if you want to work with two distinct odd integers m and n, they shouldn't 	
both equal $2k + 1$. If they do, they're not distinct.	
	1

Common Mistakes	•
3. Jumping to a conclusion	
 Do not allege that something is true without giving an adequate reason. 	
Assuming what is to be proved	•
 This is sometimes subtle, but it's very bad. 	
5. Confusion between what is known and what	
is still to be shown If you want to state – in advance – what your	
proof aims to show, write "We aim to show" or	
something like that. Then, actually show it!	
Common Mistakes	
Use of any when the correct word is some These words are occasionally – but not always –	
interchangeable.	
7. Misuse of the word if	
 We often use if instead of because. This is bad. 	
	1
Example 2	
Find the mistake(s) in the "proof" of the statement.	
Statement: The sum of any two even integers	
equals $4k$ for some integer k .	
"Proof": Suppose m and n are any two even	
integers. By the definition of even, $m=2k$ for	
some integer k and $n = 2k$ for some integer k . By substitution, $m + n = 2k + 2k = 4k$. This is what	
was to be shown.	

Example 2 (continued) Is the statement true or false? Statement: The sum of any two even integers equals $4k$ for some integer k .		
Proving an Existential Statement is False To prove an existential statement is false, you must prove its negation (which is a universal		
statement) is true.		
Example 3 Prove that the statement is false. Statement: There exists an integer $k \ge 4$ such that $2k^2 - 5k + 2$ is prime.	Let K be an integer where $K \ge 4$. Then, $2 K^2 - 5K + 2 = (2K - 1)(K - 2)$ by factoring $M = 2^{N-1}$ and $n = K - 2$ are both in tegers and you $K \ge 4$, neither M or $n = 1$	
	There fore, 2 K - SKT2 = Mn, meaning there are t-o factor other than one. By te finition, 2 K2-SK+2 5 is composite.	001

Example 4

Determine whether the statement is true or false. Justify your answer with a proof or counterexample.

The product of any even integer and any integer

m's ony our integer, n'is and integer.

m = 2k to some integer 10

Men = (ZK)n by substitution

= ZCKn) by associativity of multiplication

Since the productof two interes is an en inter , get n= istage
Mexicone Mose and sever. 000.

Example 5

Determine whether the statement is true or false. Justify your answer with a proof or counterexample.

For all integers a, b, and c, if a, b, and c are consecutive, then a+b+c is even

Z+>+4= a 9:5000

Determine whether the statement is true or false. Justify your answer with a proof or counterexample.

Any product of four consecutive integers is one less than a perfect square.

16+1)(1+216+2) [(n2+n) (n2+5n+6) = 1 4+529+602+13+52+60 = 1 + 61 + 11 12 + 61

Direct Proof and Counterexample III

Monday, September 19, 2022 2:04 PM

CS1200+Lec ture+12+...

Montan Deciment or Science and Technology	
Section 4.3	
Direct Proof and Counterexample III:	
Rational Numbers	
Rational Numbers	
A real number r is rational iff it can be expressed as the quotient of two integers with a nonzero denominator.	
A real number that is not rational is called irrational.	
Example 1 Determine whether each number is rational. If	
so, write it as the ratio of two integers. a) $-\frac{21}{7}$ b) 1.2345	
c) 0.454545	

7777 $\cdot 100 = 71.73 - 0.69 = 73$ 100 + - + = aa + 4 4a + = 17 $k = \frac{73}{aa}$ 52 + 744.17 - 52.4744.7 10000 + - + = 524691.7 4999 + = 524691.7

The Zero Product Property	
The product of two real numbers is zero iff at least one of the real numbers is zero.	
reaction of the real homoera a zero.	
	_
Example 2	
If m and n are integers and neither m nor n is zero, is	
$\frac{m+n}{mn}$ a rational number?	
	_
Example 3	
Prove that every integer is a rational number.	

Theorem	
Every integer is a rational number.	
	1
Example 4	
Prove that the sum of two rational numbers is rational.	
	_
Th	
Theorem The sum of any two rational numbers is rational.	

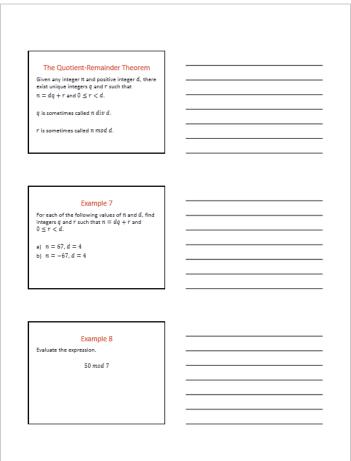
Example 5 When expressions of the form (x-r)(x-s) are multiplied out, a quadratic polynomial is obtained. What can be said about the coefficients of the polynomial obtained in each of these scenarios: i. Both r and s are odd ii. Both r and s are even iii. One is even and the other is odd Example 5 (continued) Use the results of this example to explain why $x^2-1253x+255$ cannot be written as a product of the form (x-r)(x-s)4

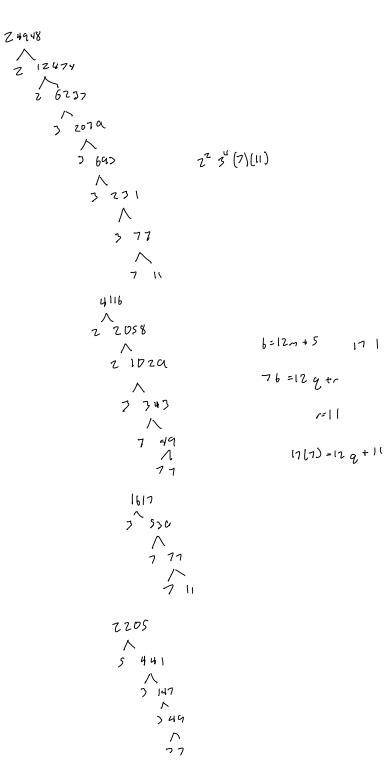
IV Divisibility

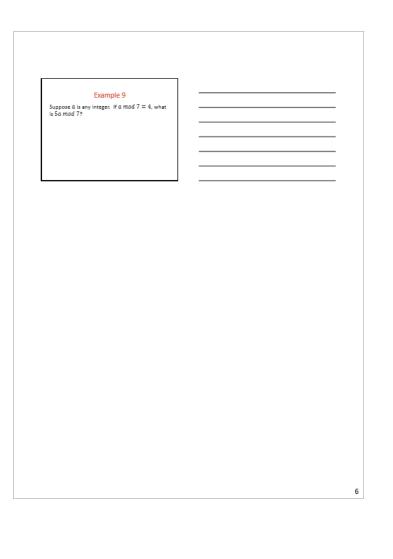
Monday, September 26, 2022 1:59 PM

CS1200+Lec ture+13+...

Example 1	
Does 12 divide 60? Justify your answer.	
	1
Theorem	
For all integers a and b, if a and b are positive	
and a divides b , then $a \le b$.	
Corollary For all integers 4 and positive integers b, if	
a divides b , then $ a \le b$.	
Example 2 Prove that the only divisors of 1 are 1 and -1.	
nove that the only divisors of 1 are 1 and -1.	
Example 3	
Example 3 Prove that divisibility is transitive.	
· ·	
Prove that divisibility is transitive.	
Prove that divisibility is transitive. That is, prove that if $\alpha \hat{b}$ and $\hat{b} c$ then αc .	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement:	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then $a \equiv b$.	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then $a \equiv b$. The Unique Factorization of Integers Given any integer $n > 1$, there exist a positive integer b , and $b \mid a$ and $b \mid a$ then the context of the positive integer $b \mid a \mid b$.	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then $a = b$. The Unique Factorization of Integers Given any integer $n > 1$, there exist a positive integer k , distinct prime numbers p_0 , m , p_k , and positive integer k , distinct prime numbers p_0 , m , p_k , and positive integer k , distinct prime numbers p_0 , m , p_k , and positive integers k , m , k , k , and positive integers k , m , k , k , and positive integers k , m , k , k , and positive integers k , m , k , k , and positive integers k , m , k , k , and positive integers k , m , k , k , and positive integers k , m , k , k , and positive integers k , m , k , k , and positive integers k , m , k , k , and positive integers k , m , k , k , and positive integers k , m , k , k , and positive integers k , k , and k , and k , and k , k , k , and k , k , and k , k , and k , k , k , k , and k , k , and k , k , k , and k ,	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then $a \equiv b$. The Unique Factorization of Integers Given any integer $n > 1$, there exist a positive integer k , distinct prime numbers p_1, \dots, p_k , and positive integers s_1, \dots, s_k such that $n \equiv p_1^m \dots p_k^m$ and any other expression for n as a product of	
Prove that divisibility is transitive. That is, prove that if $a \mid b$ and $b \mid c$ then $a \mid c$. Example 4 Disprove the following statement: For all integers a and b , if $a \mid b$ and $b \mid a$ then $a = b$. The Unique Factorization of Integers Given any integer $n > 1$, there exist a positive integer k , distinct prime numbers p_1, \dots, p_k , and positive integers a_1, \dots, a_k such that $a_1 = a_2 = a_k$.	







Division into Cases

Wednesday, September 28, 2022 2:02 PM

CS1200+Lec ture+14+...

SCT Montain December of Science and Technology (Science 40) has made	
Section 4.5 Direct Proof and Counterexample V: Division Into Cases	
Absolute Value For any real number x , the absolute value of x , denoted $ x $, is defined as follows: $ x = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$	

Lemma 2 For every real number r , $ -r = r $.	
The Triangle Inequality	
For all real numbers x and y , $ x+y \leq x + y $.	
Example 1 Prove the Triangle Inequality.	
Example 2 Prove the following statement.	
The fourth power of any integer has the form $8m ext{ or } 8m+1 ext{ for some integer } m.$	

Section 4.7 Indirect Argument: Contradiction and Contraposition	
Proof by Contradiction 1. Suppose the statement to be proved is false. That is, suppose the negation of the statement is true. 2. Show that this supposition leads logically to a contradiction. 3. Conclude that the statement to be proved is true.	
Example 3 $ \label{eq:prove the statement.} $ For any integer n, n^2-2 is not divisible by 4 .	Case 1: n: sodd $n=2k+1$ for some information assume n^2-2 is his; siele by 4 n^2-2 : $4x$ for some infests n^2-1 : $(2k+1)^2-2$: $4k^2+4k-1$ $= 4k^2+4k-1$
	Case 2: n is even n= 2 k for some in legal; Assume n= 2 for some in legal;
Proof by Contraposition 1. Express the statement to be proved in the form ∀x in D, if P(x) then Q(x). 2. Rewrite the statement in the contrapositive form ∀x in D, if ~Q(x) then ~P(x). 3. Prove the contrapositive by a direct proof.	by curth die fire, nach isnot dans!

Prove the statement.	
For every integer n , if n^2 is odd then n is od	id.
The Relationship between Contradiction and Contraposition To prove $\forall x \text{ in } D$, if $P(x)$ then $Q(x)$ by contradiction instead of contraposition,	
Contradiction and Contraposition To prove $\forall x \text{ in } D, \text{ if } P(x) \text{ then } Q(x) \\$ by contradiction instead of contraposition, can suppose	уои
Contradiction and Contraposition To prove $\forall x \text{ in } D, \text{ if } P(x) \text{ then } Q(x)$ by contradiction instead of contraposition, can suppose $\exists x \text{ in in } D \text{ such that } P(x) \text{ and } \sim Q(x)$ and arrive at the contradiction that both $P(x)$	you
Contradiction and Contraposition To prove $\forall x \text{ in } D, \text{ if } P(x) \text{ then } Q(x)$ by contradiction instead of contraposition, can suppose $\exists x \text{ in } in D \text{ such that } P(x) \text{ and } ^Q(x)$	you

Indirect Argument

Monday, October 3, 2022 1:59 PM

CS1200+Lec ture+15+...

- Description of the Control of the	•	
Messar Unitert or Scance est-Technical fearer th I has fear		
Section 4.8		
Indirect Argument: Two Famous Theorems		
	1	
Two Famous Theorems This section looks at two famous theorems. We will state both theorems, plus a proposition		
necessary to prove the second. We will work through the proof of one of the two theorems in detail.		
First Famous Theorem		
$\sqrt{2}$ is irrational.		

then $p \nmid (a+1)$.	
	1
Second Famous Theorem	
The set of prime numbers is infinite.	
Example 1	
Prove the First Famous Theorem or, alternately, prove the proposition and the Second Famous	
Theorem.	
prove the proposition and the Second Famous	

See Monate United the Security and Translated South Security See Security	
Section 4.10	
Application: Algorithms	
Algorithms	
An algorithm is a step-by-step method for	
performing some action.	
Variables	
When working with high-level programming languages, a variable can be used to refer to a	-
location in a computer's memory and/or the	
contents of that location.	
The data type of a variable indicates the set	
from which the variable takes its values.	

Variables	
An assignment statement gives a value to a variable. It has the form $x := e$	
where x is a variable and θ is an expression.	
Such a statement is read "X is assigned the value θ " or "X is defined to equal θ ."	
Iterative Processes and Trace Tables The values of the variable(s) involved in an	
iterative process (loop) within an algorithm should be tracked carefully.	
This can be done using a trace table.	
Example 2 Find the values of θ and f after execution of the following loop by first making a trace table.	
arepsilon = 2, f = 0	
for $k = 1$ to 3 $e := e \cdot k$	
$f \coloneqq e + f$ next k	

Formal Descriptions of Algorithms

When formally describing an algorithm, we generally include the following information:

- 1. The name of the algorithm.
- 2. A brief description of how the algorithm works.
- 3. The input variable names, labeled by data type.
- The statements that make up the body of the algorithm, possibly with explanatory comments.
- 5. The output variable names, labeled by data type.

The Division Algorithm

```
Input: a (a nonnegative integer) and d (a positive integer)

Algorithm body: r:=a, q:=0

while r\geq d

r:=r-d

q:=q+1

end while

(After the loop, a=dq+r.)

Output: q, r (nonnegative integers)
```

Example 3

Make a trace table to trace the action of the division algorithm for the input variables a=26 and d=7.

Algorithms and Sequences

Monday, October 3, 2022 1:59 PM

CS1200+Lec ture+16+...

Manage Victorian or South and Southern Prince (V. San etc.)	
Section 4.10	
Application: Algorithms	
The Greatest Common Divisor Let G and B be integers that are not both zero.	
The greatest common divisor of α and δ , denoted $gcd(\alpha, \delta)$, is the integer d with the	
following properties: 1. d divides both 0 and 0.	
 For every integer c, if c a and c b, then c ≤ d. 	
. 2	
	٦
Lemma	
If G and \tilde{B} are integers that are not both zero and if Q and T are any integers such that	
a = bq + r then	
gcd(a,b) = gcd(b,r)	

The Euclidean Algorithm

Goal: Find grad (A) for integers $A > B \ge 0$. Procedure: If B = 0, then $\operatorname{prof}(A,B) = r$ integers $A > B \ge 0$. Procedure: If B = 0, then $\operatorname{prof}(A,B) = A$. If B = 0, then divide A by B using the division algorithm, obstaining a quotient q and remainder r such that A = Bq + r. Then, note that $\operatorname{gr}(A,B) = \operatorname{grd}(B,r)$. Repeat the process until r = 0.

Fva	m	n	0	В
		P		4

294 and 60

832 and 10933

	Ιł	0	1	12	3
	Α	10933	832	117	1>
	Ø	10933	117	13	0
	a		17	1	٩
	(117	17	0
a	cd				13
٢	>				

Relatively Prime

10977: 872(17)+117

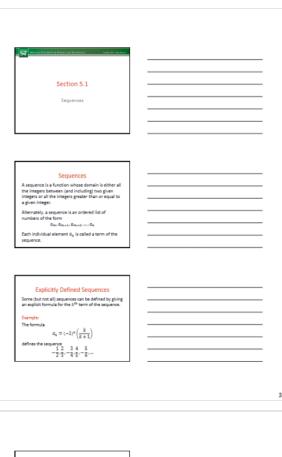
872=11767)+17 117=17(9)+0

$$3ch(1720,780) = 3ch(780,540) = 3ch(540,240)$$

$$780 \overline{)(320} \qquad 540 \overline{)550} \qquad 240 \overline{)550} \qquad 40 \overline{)540}$$

$$\frac{790}{540} \qquad \frac{790}{540} \qquad 60$$

$$9ch(60,0) = 60$$



Example 4	
Simplify each of the following factorial	
expressions.	
4! 6!	
(2n + 1)!	
(2n-1)!	
Example 5	
Consider the sequence	
Consider the sequence $1, -x, \frac{x^2}{2}, -\frac{x^2}{6}, \frac{x^4}{24}, -\frac{x^5}{120}, \dots$	
a) Find the next two terms in the sequence.	
b) Write an expression for the πth term of the sequence where π begins at 1.	
c) Write an expression for the kth term of the sequence where k begins at 0.	
	Signa
Summation Notation When adding up the values of a sequence, we can use	2
summation notation to concisely express the sum.	
If m and n are integers, $m \le n$, and $a_m, a_{m+1}, \ldots, a_n$ are real numbers (or real-valued expressions), then	
$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + + a_n$	
\hat{k} is called the index of summation.	_
k is called the index of summation. m is called the lower limit of the summation.	
k is called the index of summation. m is called the lower limit of the summation.	
k is called the index of summation. m is called the lower limit of the summation.	
k is called the index of summation. m is called the lower limit of the summation.	
k is called the index of summation. m is called the lower limit of the summation.	
k is called the index of summation. m is called the lower limit of the summation.	
k is called the index of aumention, m is called the lower limit of the summation, n is called the upper limit of the summation, n is called the upper limit of the summation.	
It is altest the intex of aumentation. In it called the beautiful of the summation. It is called the upper limit of the summation. It is called the upper limit of the summation.	
It is altest the intex of aumentation. It is called the beautiful of the summation. It is called the upper limit of the summation. It is called the upper limit of the summation. Example 6 Evaluate each summation.	
It is altest the intex of aumentation. It is called the beautiful of the summation. It is called the upper limit of the summation. It is called the upper limit of the summation. Example 6 Evaluate each summation.	
k is called the index of aummation. In is called the beautiful of the summation. In is called the upper limit of the summation. Is called the upper limit of the summation. Example 6 Evaluate each summation. \$\frac{\xi}{\xi_{k=1}} \xi_{k=1}^{2} \xi_	
It is altest the intex of aumentation. It is called the beautiful of the summation. It is called the upper limit of the summation. It is called the upper limit of the summation. Example 6 Evaluate each summation.	
k is called the index of aummation. In is called the beautiful of the summation. In is called the upper limit of the summation. Is called the upper limit of the summation. Example 6 Evaluate each summation. \$\frac{\xi}{\xi_{k=1}} \xi_{k=1}^{2} \xi_	
k is called the index of aummation. In is called the beautiful of the summation. In is called the upper limit of the summation. Is called the upper limit of the summation. Example 6 Evaluate each summation. \$\frac{\xi}{\xi_{k=1}} \xi_{k=1}^{2} \xi_	
k is called the index of aummation. In is called the beautiful of the summation. In is called the upper limit of the summation. Is called the upper limit of the summation. Example 6 Evaluate each summation. \$\frac{\xi}{\xi_{k=1}} \xi_{k=1}^{2} \xi_	P;

Properties of Sums and Products $\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$ $\sum_{k=m}^{n} ca_k = c \sum_{k=m}^{n} a_k$ $\prod_{k=m}^{n} (a_k b_k) = \left(\prod_{k=m}^{n} a_k\right) \left(\prod_{k=m}^{n} b_k\right)$	

Proving Formulas

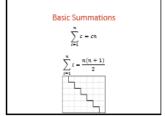
Monday, October 10, 2022 2:01 PM

CS1200+Lec ture+18+...



Dyintuction, 1+ ARS (1+X)

Proof by Induction	
To perform the inductive step, first suppose that $P(k)$ is true, where k is any particular but	
arbitrarily chosen integer with k ≥ a. • This supposition is called the <i>inductive</i> hypothesis.	
Then, show that $P(k+1)$ is true.	
Example 1 Use induction to prove	
$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$	
i=1 for all positive integers n.	
Closed Form	
If a sum or product with a variable number of terms is shown to be equal to an expression	
which does not contain an ellipsis, summation notation, or product notation, we say that the sum is written in closed form.	
sum is written in closed form.	



Basic Summations
$$\sum_{i=1}^{n} t^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} t^2 = \left[\frac{n(n+1)}{2}\right]^2$$

Example 2 Use a basic summation formula to evaluate each of the following sums. $5+10+15+20+\cdots+300$ $4^2+5^2+\cdots+10^3$

Use induction to prove that

1+14 & (1+4)^2

for real non 47-1

and in tegal 122

Base case: 1=2

5:nce \$^220, J 1+K+ = Cl+x)^k fr. some M+ K22

I,H.

6001: show | + (K+1) + 4(1+x) K+1

$$u_{CL} = \frac{v_{1}(v_{-L})}{v_{1}}$$

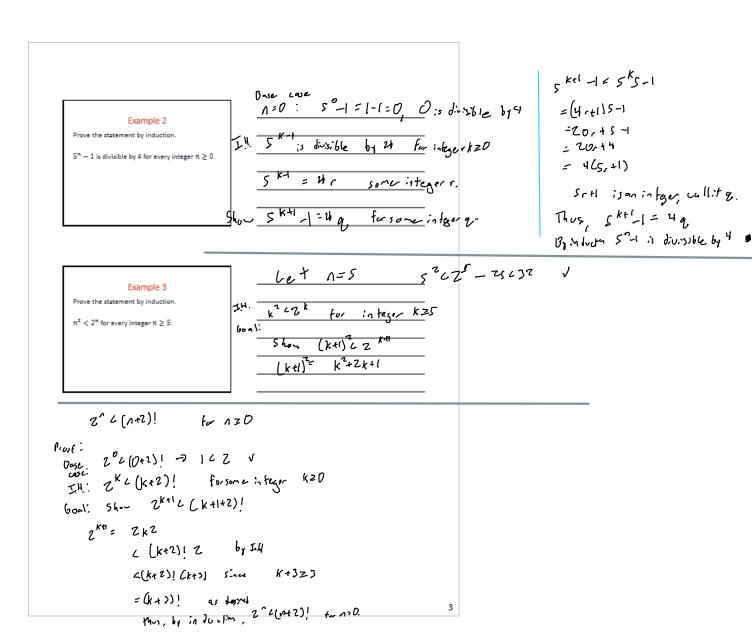
Geometric Sequences

Wednesday, October 12, 2022

CS1200+Lec ture+19+...

Massac University or Scance and Technology Funer th I have deser	
Section 5.2	
Mathematical Induction I: Proving Formulas	
Geometric Sequences	
A geometric sequence is a sequence where each term is obtained from the preceding one by	
multiplying by a constant factor.	
If the first term is 1 and the constant factor is r , the sequence is	
1, r, r2, r2,	
Sum of a Geometric Sequence	
For any real number $r \neq 1$ and any integer $n \geq 0$,	
$\sum_{i=0}^{n} r^{i} = \frac{r^{n+i} - 1}{r - 1}$	

00 in Discrete Mathematics	
In discrete mathematics, we typically define $0^\circ=1$	
Elsewhere in mathematics (including calculus), we often say 0° is indeterminate.	
	٦
Example 1 Find a closed form expression for the sum	
$5^z + 5^+ + 5^s + \cdots + 5^k$ where $k \ge 3$ is an integer.	
Make Devices of Sales on Transcence	
Section 5.3	
Mathematical Induction II: Applications	



Recursion

Friday, October 14, 2022

2:03 PM

CS1200+Lec ture+20+...

Meson at University or Science and Translation (Science 40) Ann. Meson (6) Ann. M	
Sections 5.6 and 5.7	
Defining Sequences Recursively Solving Recurrence Relations by Iteration	
Recursively Defined Sequences	
A recurrence relation for a sequence a_0, a_1, a_2, \dots is a formula that relates each term a_k to one or more of its predecessors. The initial conditions for such a relation specify the specific values of a_0 (and, if necessary, the next few values as well).	
Example 1	a,=1 y=1
Find the first four terms of each sequence. a) $a_k=2a_{k-1}+k$ for every integer $k\geq 2$ $a_1=1$	$a_{1} = 11$ $a_{2} = 11$ $a_{3} = 26$ $a_{4} = 7$
b) $u_k = ku_{k-1} - u_{k-2}$ for every integer $k \ge 3$ $u_1 = 1, u_2 = 1$	

Example 2

A single pair of rabbits (male and female) is born at the beginning of a year. Assume the following conditions:

- Rabbit pairs are not fertile during the first month of life but thereafter give birth to one new male/female pair at the end of every month.
- 2. No rabbits die.

How many rabbits will there be at the end of the year?

_ r _o = 1	$C_2 = 21$
<u>ς= </u>	G = 34
12: 1+1-2	r = 55
rg = 2+1=3	10= 9 a
<u>(= 5</u>	7 = 14 4
1 × 8	r = 273 pairs
C= 13	(13= 377
b	11/2 6 10

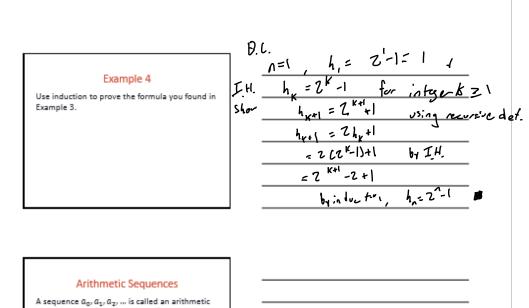
The Fibonacci Sequence

$$\begin{split} F_0 &= 1 \\ F_1 &= 1 \\ F_k &= F_{k-1} + F_{k-2} \end{split}$$

Example 3

The Towers of Hanoi puzzle consists of disks with holes in their centers, piled in order of decreasing size on one pole in a row of three. The goal is to move all the disks one by one from one pole to another, never placing a larger disk on top of a smaller one, and ending with the entire pile on a different pole.

How many moves would be required to move a pile of 7 disks?



sequence iff there is a constant d such that $a_k = a_{k-1} + d$

for each integer $k \ge 1$.

An explicit formula for such a sequence is $a_n = a_0 + dn$ for every integer $n \ge 0$.

Geometric Sequences

A sequence a_0, a_1, a_2, \dots is called a geometric sequence iff there is a constant \boldsymbol{r} such that $a_k = ra_{k-1}$

for each integer $k \ge 1$.

An explicit formula for such a sequence is $a_n = a_0 r^n$

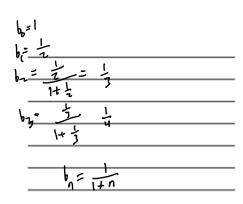
for every integer $n \ge 0$.

3 7 15 71 63 254 127 255

Use iteration to find an explicit formula for the sequence.

 $b_k = \frac{b_{k-1}}{1+b_{k-1}}$ for each integer $k \geq 1$ $b_0 = 1$

Then, verify the correctness of the formula using induction.



Set Theory

Friday, October 21, 2022 2:02 PM

CS1200+Lec ture+21+...

Manusca Deciment of Science and Technology Science (S) Non-Manusca	
Section 6.1	
Set Theory: Definitions and the Element Method of Proof	
Sets If S is a set and $P(x)$ is a property that elements of S may or may not satisfy, then a set A may be defined by writing $A = \{x \in S P(x)\}$ which is read as " A is the set of all x in S such that $P(x)$ is true."	
Subsets	
We can formally define a subset as follows: $A\subseteq B \Leftrightarrow \forall x, \text{ if } x\in A \text{ then } x\in B.$	
The negation is $A \nsubseteq B \Leftrightarrow \exists x \text{ such that } x \in A \text{ and } x \notin B.$	

Proper Subsets A is called a proper subset of B {denoted A ⊂ B} iff 1) A ⊆ B, and 2) there is at least one element in B which is not in A.	
Equality of Sets Given sets A and B , A equals B (written $A=B$) iff every element of A is in B and every element of B is in A . Symbolically, $A=B\Leftrightarrow A\subseteq B \text{ and } B\subseteq A.$	
Proving Subsets Let sets X and Y be given. To prove X ⊆ Y, 1) suppose that x is a particular but arbitrarily chosen element of X, and then 2) show that x is an element of Y.	

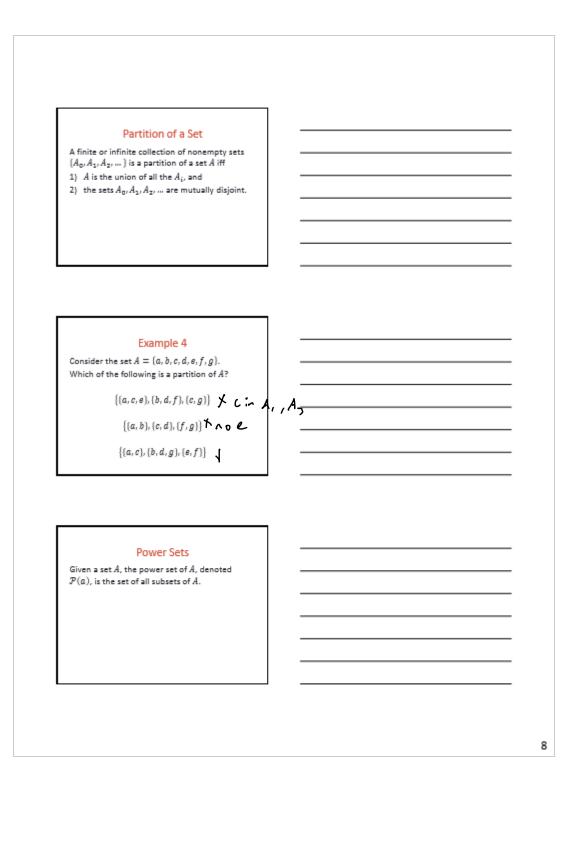
Example 1	
Let sets B and C be defined as follows: $B = \{y \in \mathbb{Z} y = 10b - 3 \text{ for some integer } b\}$	
$C = \{z \in \mathbb{Z} z = 10c + 7 \text{ for some integer } c\}$ Prove or disprove each of the following statements.	
a) B ⊆ C b) C ⊆ B	
c) B = C	
Universal Set	
A universal set is the set containing all objects or elements and of which all other sets are subsets.	
Common examples: R Z	
\mathbb{R}^2 (the set of all two-dimensional real vectors)	
Operations on Sets Let A and B be subsets of a universal set U .	
The union of A and B , denoted $A \cup B$, is the set of all elements that are in at least one of A and	
В.	
$A \cup B = (x \in U x \in A \text{ or } x \in B)$	

-

Interval Notation Given real numbers $a \le b$, $(a,b) = \{x \in \mathbb{R} a < x < b\}$ $(a,b) = \{x \in \mathbb{R} a < x \le b\}$ $(a,b) = \{x \in \mathbb{R} a \le x \le b\}$ $[a,b) = \{x \in \mathbb{R} a \le x \le b\}$ $[a,b] = \{x \in \mathbb{R} a \le x \le b\}$ The symbols 00 and -00 are used to indicate intervals that are unbounded on either the right or the left.	
Example 2 Let the universal set be \mathbb{R} , and let $A = \{x \in \mathbb{R} 0 < x \le 2\}$ $B = \{x \in \mathbb{R} 1 \le x < 4\}$ $C = \{x \in \mathbb{R} 3 \le x < 9\}$ Find each of the following. $A \cup B = C \cup V$ $A \cap B = V \cup V$ $A \cap C = V \cup V \cup V \cup V$ $A \cap C = V \cup V \cup V \cup V \cup V$	
Example 2 Let the universal set be \mathbb{R} , and let $A = \{x \in \mathbb{R} 0 < x \le 2\}$ $B = \{x \in \mathbb{R} 1 \le x < 4\}$ $C = \{x \in \mathbb{R} 3 \le x < 9\}$ Find each of the following. $B - A$ A^c $\{x \in \mathbb{R} 3 \le x < 9\}$ $\{x \in \mathbb{R} 3 \le x < 9\}$ $\{x \in \mathbb{R} 3 \le x < 9\}$	

Operations on Indexed Collections of Sets Given sets A_0,A_1,A_2,\dots that are subsets of a universal set U and given a nonnegative integer n, $\bigcup_{i=0}^{n} A_i = \{x \in U | x \in A_i \text{ for at least one integer } 0 \le i \le n\}$ $\bigcup_{i=0} A_i = (x \in U | x \in A_i \text{ for at least one integer } i \ge 0)$ Operations on Indexed Collections of Sets Given sets A_0,A_1,A_2,\dots that are subsets of a universal set U and given a nonnegative integer n, $\bigcap A_{\ell} = \{x \in U | x \in A_{\ell} \text{ for every integer } 0 \le \ell \le n\}$ $\bigcap_{i=0} A_i = \{x \in U | x \in A_i \text{ for every integer } i \ge 0\}$ Example 3 Let $D_i = [-2i,2i]$ for each nonnegative integer i. Find each of the following quantities. $\bigcup_{i=0}^{4} D_{i} = \begin{bmatrix} -8, 8 \end{bmatrix}$ $\bigcup_{i=0}^{4} D_{i} = \begin{cases} 0 \end{cases}$

The Empty Set The empty set (or null set) Ø is the unique set	
containing no elements.	
Disjoint Sets	
Two sets are disjoint iff they have no elements in common. Symbolically,	
A and B are disjoint $\Leftrightarrow A \cap B = \emptyset$	
Mutually Disjoint Sets	
Sets $A_0, A_2, A_2,$ are mutually disjoint (or pairwise disjoint or nonoverlapping) iff no two	
sets A_i and \bar{A}_j with distinct subscripts have any elements in common.	

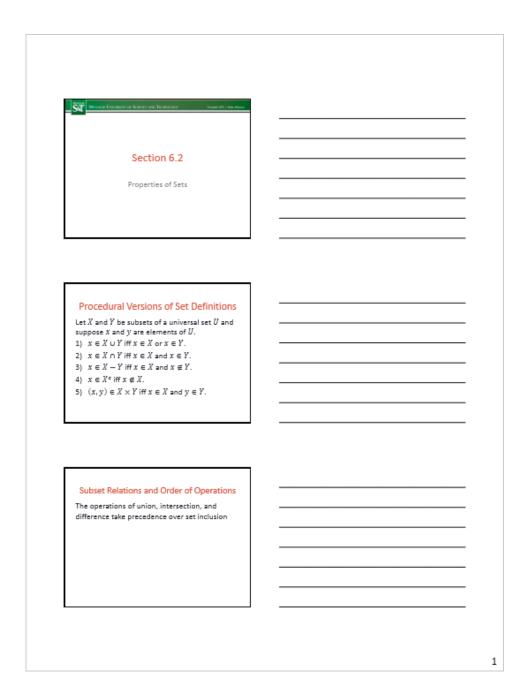


Example ! Let $A = \{1,2,3,4\}$ Find $\mathcal{P}(a)$.	5		
{{1},{2},{3},{4},	{1,2},{1,3},{1,4}	,{2,3},}	

Properties of Sets

Monday, October 24, 2022 2:00 PN

CS1200+Lec ture+22+...



For all sets A and B , $A \cap B \subseteq A$ and $A \cap B \subseteq B$. For all sets A and B , $A \subseteq A \cup B$ and $B \subseteq A \cup B$. For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Since $A \subseteq C$ and $A \subseteq C$ and $A \subseteq C$. Since $A \subseteq C$ and $A \subseteq C$ and $A \subseteq C$.	For all sets A and $B \subseteq B$. For all sets A and $B \subseteq A \cup B$. For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq B$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Since $A \subseteq C$ and $A \subseteq C$.	Some Subset Relations	
For all sets A and B , $A \subseteq A \cup B$ and $B \subseteq A \cup B$. For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Since $A \subseteq C$ and $A \subseteq C$.	For all sets A and B , $A \subseteq A \cup B$ and $B \subseteq A \cup B$. For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Since $A \subseteq C$ and $A \subseteq C$. Set Identities Let all sets referenced below be subsets of a	-	
For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Since $A \subseteq C$ and $A \subseteq C$.	For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Since $A \subseteq C$ $A \subseteq C$ $A \subseteq C$. Set Identities Let all sets referenced below be subsets of a	$A \cap B \subseteq A$ and $A \cap B \subseteq B$.	
For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Since $A \subseteq C$ and $A \subseteq C$.	For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$. For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Since $A \subseteq C \subseteq C$ then $A \subseteq C$. Set Identities Let all sets referenced below be subsets of a	For all sets A and B,	
if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$ then $A \subseteq C$. Since $B \subseteq C \subseteq A \subseteq C$	Example 1 Prove the following statement: For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Set Identities Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Set Identities Let all sets referenced below be subsets of a	$A \subseteq A \cup B \text{ and } B \subseteq A \cup B$.	
if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$ then $A \subseteq C$. Let $A \subseteq B$ and $A \subseteq C$ and $A \subseteq C$ then $A \subseteq C$. Since $B \subseteq C \subseteq A \subseteq C$	Example 1 Prove the following statement: For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Set Identities Let $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Set Identities Let all sets referenced below be subsets of a	For all sets A, B, and C,	
For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Let $A \subseteq C$ Since $C \subseteq C$ Since $C \subseteq C$ Since $C \subseteq C$	Prove the following statement: For all sets A , B , and C , if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. Set Identities Let all sets referenced below be subsets of a	if $A\subseteq B$ and $B\subseteq C$ then $A\subseteq C$.	
	Let all sets referenced below be subsets of a	Prove the following statement: For all sets A, B, and C,	12+ x 5 A 5, re A 5 B , x & B 5:ne B 5 C , x & C C

Set Identities	
Let all sets referenced below be subsets of a universal set U .	
Commutative Laws:	
For all sets A and B,	
$A \cup B = B \cup A$	
$A \cap B = B \cap A$	
	1
Set Identities	
Let all sets referenced below be subsets of a universal set U .	
Associative Laws:	
For all sets A, B, and C,	
$(A \cup B) \cup C = A \cup (B \cup C)$ and	
$(A \cap B) \cap C = A \cap (B \cap C)$	
	-
Set Identities	
Let all sets referenced below be subsets of a	
universal set U .	
Distributive Laws:	
For all sets A, B, and C,	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and	
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
	J

Example 2 Prove the distributive law $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ for all sets A, B , and C .	PI: Let A, B, C be sets Prove Au (BnC) = (AUB) n (AUC) Let x & Au (BnC) agent: show x & (AuB) n (AUC) Case 1: x & A If x & A, hen x & AUD and x & AUC Since x & AUD and x & AUC, x & (AUB) n (AUC)
	Lase 2: LE Bal if the Dal, My teDand tel 5:ne ted, teAud Since tel, teAud
Set Identities Let all sets referenced below be subsets of a universal set <i>U</i> . Identity Laws:	Here : n both cases, AL (Unc) C (AUD) n (AUL)
For every set A , $A \cup \emptyset = A$ and $A \cap U = A$	PZ. proce (AUD) AULD & AULBAL)
Complement Laws:	
$A \cap A^{\varepsilon} = \emptyset$	

Set Identities	
Let all sets referenced below be subsets of a	
universal set U.	
Double Complement Law:	
For every set A , $(A^e)^e = A$	
]
Set Identities	
Let all sets referenced below be subsets of a universal set <i>U</i> .	
Idempotent Laws:	
For every set A,	
$A \cup A = A$ and	
$A \cap A = A$	
	1
Set Identities	
Let all sets referenced below be subsets of a	
universal set U.	
Universal Bound Laws:	
For every set A , $A \cup U = U$	
and $A \cap \emptyset = \emptyset$	

Set Identities	
Let all sets referenced below be subsets of a	
universal set U .	
De Morgan's Laws:	
For all sets A and B , $(A \cup B)^c = A^c \cap B^c$	
and	
$(A \cap B)^e = A^e \cup B^e$	
	_
]
Set Identities	
Let all sets referenced below be subsets of a universal set <i>U</i> .	
Absorption Laws: For all sets A and B ,	
$A \cup (A \cap B) = A$ and	
$A \cap (A \cup B) = A$	
	1
Set Identities	
Let all sets referenced below be subsets of a universal set U .	
universal set U.	
Complements of U and \emptyset : $U^c = \emptyset$	
and	
$\phi^c = U$	
	<u> </u>

Set Identities Let all sets referenced below be subsets of a universal set <i>U</i> . Set Difference Law: For all sets <i>A</i> and <i>B</i> ,	
For all sets A and B,	
$A - B = A \cap B^c$	
Theorem	
For any sets A and B , if $A \subseteq B$, then	
1) A n B = A, and	
 A ∪ B = B. 	
	c
Example 3	Suppose this isnt face. Thatis, Eugh news. such that E&A
· ·	thatis. F. B n elever
Prove the following theorem: If E is a set with no elements and A is any set,	Such had E & A

Thus, E EA

Example 4

Prove the following theorem: There is only one set with no elements Assume two diffined sets E, E2.

For the precessing theorem

E, = E2 and E2 CE!

There we E; E2

Proving a Set is Empty

To prove that a set is empty, suppose the set has an element and derive a contradiction.

Example 5

Prove the following theorem: For all sets A and B, if $A\subseteq B$ then $A\cap B^c=\emptyset$.

Herce t E A and t E O C.

Herce t E A and t E B

Homever, A C D

This is a contradiction.

Thus, An B = 0

Functions

Monday, October 31, 2022 2:00 PM

CS1200+Lec ture+23+...

Section 7.1 Functions Defined on General Sets Functions (more formally) A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one element in Y .	
Functions Defined on General Sets Functions (more formally) A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
Functions Defined on General Sets Functions (more formally) A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
Functions (more formally) A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
Functions (more formally) A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
A function f from a set X to a set Y , denoted $f: X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y , and 2) No element in X is related to more than one	
f: X → Y, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties: 1) Every element in X is related to some element in Y, and 2) No element in X is related to more than one	
properties: 1) Every element in X is related to some element in Y, and 2) No element in X is related to more than one	
1) Every element in X is related to some element in Y, and 2) No element in X is related to more than one	
2) No element in X is related to more than one	
Functions (more formally)	
The unique element to which f sends an element x in X is called $f(x)$ and can be	
referred to in words as:	
The output of f for the input x The output of f for the input x	
• The value of f at x	
The image of x under f	

Functions (more formally) The set of all values of f is called the range of f	
or the image of X under f .	
Symbolically, range of $f = \{y \in Y y = f(x) \text{ for some } x \in X\}$	
Functions (more formally)	
Given an element y in Y , there may exist element in X with y as their image. When x is	
an element such that $f(x) = y$, then x is called a preimage of y or an inverse image of y . The	
set of all inverse images of y is called the inverse	
image of y	
Symbolically,	
inverse image of $y = \{x \in X f(x) = y\}$	
Equality of Functions	
If $F: X \to Y$ and $G: X \to Y$ are functions, then $F = G$ iff $F(x) = G(x)$ for every $x \in X$.	
r = 0 mr (x) = 0 (x) for every x e x.	

The	Idox	atitus	Error		on
11110	III.	HILLY	E UII	ки	0.26

Given a set X, define a function I_X from X to X by

$$I_x(x) = x$$

for each $x \in X$.

 I_{X} is called the identity function on X

Example 1

Recall that $\mathcal{P}(A)$ denotes the set of all subsets of A.

Define a function $F: \mathcal{P}(\{a,b,c\}) \to \mathbb{Z}^{nonneg}$ as follows:

 $F(X) = \mbox{the number of elements in } X$ Draw an arrow diagram for F.

$\begin{array}{c|c} \phi \longrightarrow \emptyset \\ \hline \alpha & & \\ \downarrow & & \\ \hline c & & \\ \hline a_i b_i & & \\ a_i c & & \\ \downarrow c & & \\ a_i b_i c & & \\ \hline a_i b_i c & & \\ \hline$

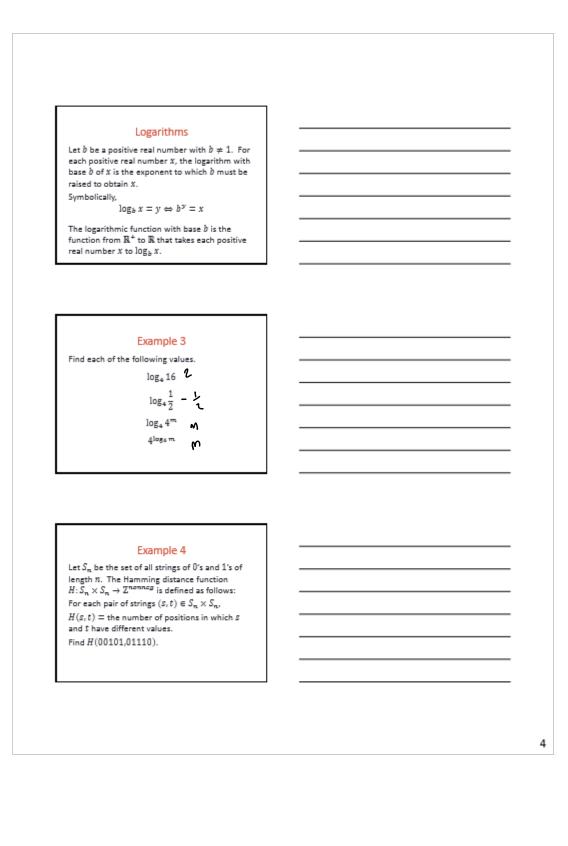
Example 2

Let $J_{\mathbf{S}} = \{0,1,2,3,4\}$ and define a function $G\colon J_{\mathbf{S}} \times J_{\mathbf{S}} \to J_{\mathbf{S}} \times J_{\mathbf{S}}$ as follows: For each $(a,b) \in J_{\mathbf{S}} \times J_{\mathbf{S}}$, $G(a,b) = \left((2a+1) \bmod 5, (3b-2) \bmod 5\right)$

Find the following.

G(3,4) G(1,0)

-2 mod 5 = 3 mod 5

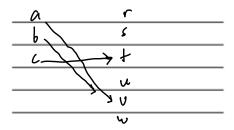


Boolean Functions	
An n-place Boolean function f is a function whose domain is the set of all ordered n-tuples of 0's and 1's and whose co-domain is the set (0,1).	
More formally, the domain is the Cartesian product of n copies of $\{0,1\}$, denoted $\{0,1\}^n$.	
Example 5	(4+3+2) amol Z=
Consider the three-place Boolean function f defined by the following rule: For each triple (x_1, x_2, x_3) of 0's and 1's, $f(x_1, x_2, x_3) = (4x_1 + 3x_2 + 2x_3) \bmod 2$	(0+0+2/m) 2=0
Find $f(1,1,1)$ and $f(0,0,1)$.	
Functions Acting on Sets	
If $f\colon X\to Y$ is a function and $A\subseteq X$ and $C\subseteq Y$, then $f(A)=\{y\in Y y=f(x)\text{ for some }x\in A\}$	
and $f^{-1}(\mathcal{C}) = \{x \in X f(x) \in \mathcal{C}\}.$	
$f(A)$ is called the image of A . $f^{-1}(\mathcal{C})$ is called the inverse image of \mathcal{C} .	

Example 6

Let $X = \{a, b, c\}$ and $Y = \{r, s, t, u, v, w\}$. Define $f: X \rightarrow Y$ as follows: f(a) = v, f(b) = v, f(c) = t

- 1) Draw an arrow diagram for f .
- 2) Let A=(a,b), C=(t), D=(u,v), and $E=\{r,s\}$. Find f(A), f(X), $f^{-1}(C)$, $f^{-1}(D)$, $f^{-1}(E)$, and $f^{-1}(Y)$.



Inverse Functions

Wednesday, November 2, 2022

2:00 PM

CS1200+Lec ture+24+...

Managas Daymert or Scance and Translation Fusion ship has many	
Section 7.2	
One-to-One, Onto, and Inverse	
Functions	
	1
Recall: Functions (more formally)	
A function f from a set X to a set Y , denoted $f\colon X \to Y$, is a relation from X (the domain of f) to Y (the codomain of f) which satisfies two properties:	
Every element in X is related to some element in Y, and	
 No element in X is related to more than one element in Y. 	
Element III 2 .	
One-to-One Functions Let $f: X \to Y$ be a function.	
f is one-to-one (or injective) iff for all elements x_1 and x_2 in X ,	
if $f(x_1) \equiv f(x_2)$ then $x_1 \equiv x_2$	
or, equivalently, $ \text{if } x_1 \neq x_2 \text{ then } f(x_1) \neq f(x_2). $	

Example 1

Define functions $F\colon\! X\to Y$ and $G\colon\! X\to Y$ by the arrow diagrams below.

Is F one-to-one?

Is G one-to-one?

One-to-One Functions on Infinite Sets

To prove a function f is one-to-one, use direct proof as follows:

Suppose x_1 and x_2 are elements of X such that $f(x_1)=f(x_2)$. Show that $x_1=x_2$.

One-to-One Functions on Infinite Sets

To prove a function f is <u>not</u> one-to-one, we typically find elements x_1 and x_2 in X such that $f(x_1)=f(x_2)$ but $x_1\neq x_2$.

$$\frac{3x_1-1}{x_1}=\frac{3x_2-1}{x_2}$$

F١	-	m	n	اما	-5

Define $g\colon \mathbb{Z} \to \mathbb{Z}$ by the rule g(n)=8n+3 for each integer n.

Is g one-to-one? Prove or give a counterexample.

Suppose a, b & Z such that g (a) = g (b).

8at3 = 86+)

92 = 3kg

a=6 gis ene-10-one

Example 3

Define $H\colon \mathbb{R} \to \mathbb{R}$ by the rule $H(x) \equiv x^2$ for each real number \boldsymbol{x} .

Is H one-to-one? Prove or give a counterexample.

H(2) = 22 HL-2)=

> Nof one -to-one

Onto Functions

Let $f: X \to Y$ be a function.

f is onto (or surjective) iff given any element y in Y, it is possible to find an element x in Xwith the property that y = f(x).

f is <u>not</u> onto iff there exists an element y in Yfor which it is <u>not</u> possible to find an element x in X with the property that y = f(x).

Example 1 (continued) Define functions $F: X \to Y$ and $G: X \to Y$ by the arrow diagrams below.	
Is F onto? Is G onto? No Demand of Codemand of S S S S S S S S S S S S S	
]
Onto Functions on Infinite Sets To prove a function f is one-to-one, generalize from the generic particular: Suppose y is any element of Y . Show that there is an element x in X with $f(x) = y$.	
	1
Onto Functions on Infinite Sets To prove a function f is <u>not</u> onto, we typically find an element y of Y such that $y \neq f(x)$ for any x in X .	

Example 2 (continued)

Define $g\colon \mathbb{Z} \to \mathbb{Z}$ by the rule $g\left(n\right) = 8n + 3$ for each integer %.

Is ${\it g}$ onto? Prove or give a counterexample.

7-n not on intse,

Example 3 (continued)

Define $H \colon \mathbb{R} \to \mathbb{R}$ by the rule $H(x) = x^2$ for each real number \boldsymbol{x} .

Is H onto? Prove or give a counterexample.

hisnot onto

Exponential Function with base b

The exponential function with base b is the function from \mathbb{R} to \mathbb{R}^+ defined as $\exp_b x = b^x$

for all real numbers x, where $b^0 = 1$

and

$$b^{-x} = \frac{1}{b^x}$$

Laws of Exponents If a and b are both positive and x and y are both real, then $a^{x+y} = a^x a^y$ $(ab)^x = a^x b^x$ Properties of Logarithms For positive real numbers $b \neq 1, x$, and y and for every real number a, we have $\log_b xy = \log_b x + \log_b y$ $\log_b \frac{x}{y} = \log_b x - \log_b y$ $\log_b x^a = a \log_b x$ Change of Base Formula For any positive bases $a \neq 1$ and $b \neq 1$, $\log_a x = \frac{\log_b x}{\log_b a}$

Example 4 Evaluate $\log_2 7$ using a calculator.	log_7 = loge7 = h7 loge2
	10g27= log107
	100,10 2
One-to-One Correspondences	
A one-to-one correspondence (or bijection) from a set X to a set Y is a function $f\colon X\to Y$ that is both one-to-one and onto.	
Example 2 (continued) Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule $g(n) = 8n + 3$ for	
each integer n. Is g a one-to-one correspondence?	
No. not one-to-one	
and onto	

Inverse Functions

Suppose $f\colon X\to Y$ is both one-to-one and onto (i.e. a one-to-one correspondence). Then, there exists a function $f^{-1}\colon Y\to X$ such that $f^{-1}(y)$ is the unique element x in X such that f(x) = y.

Symbolically,
$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

Example 2 (continued) Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule g(n) = 8n + 3 for each integer n.

Find its inverse function g^{-1} .

hc+)=8f+	3
----------	---

4=8x+3

X= 81+3

Theorem

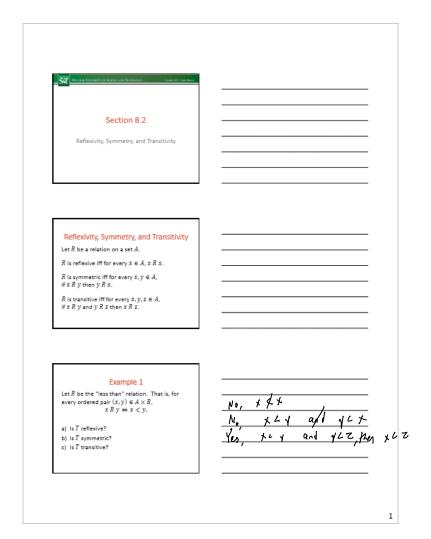
If X and Y are sets and $f\colon X\to Y$ is one-to-one and onto, then $f^{-1}\colon Y\to X$ is also one-to-one and onto.

$$\frac{\chi-z}{-s} =$$

Reflexivity, Symmetry, Transitivity

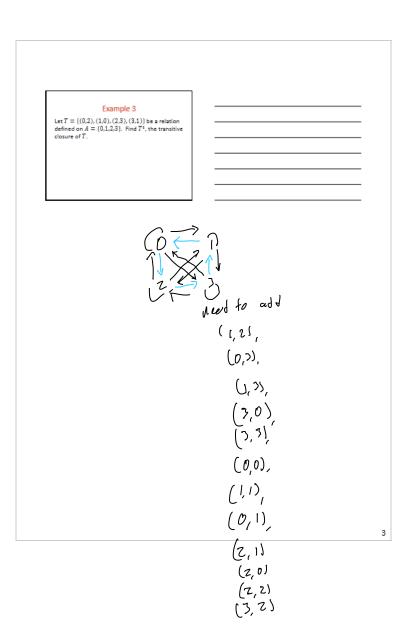
Wednesday, November 9, 2022 2:03 PM

CS1200+Lec ture+26+...





Yes,] [n-n]	
(e). 1445 proof	
<u>a 17 </u>	
3 (p-q) p-q=3k	
(p-q)*(q-1)=	365
	Yes. 18,25 proof 3 (q-r) q-r= 3i 31 (p-q) p-q= 3k



Relations on Sets

Wednesday, November 9, 2022 2:03 PM

CS1200+Lec ture+25+...

Meson as the create or ficancia and Technology Page 491 (No. No.	
Section 8.1	
Relations on Sets	
	\neg
Binary Relations	
A binary relation is a subset of a Cartesian product of two sets.	
product or two sets.	
	٦
Example 1	10T 1 : 10-1
The congruence modulo 3 relation, T , is defined from \mathbb{Z} to \mathbb{Z} as follows: For all integers m and n , $m T n \Leftrightarrow 3 (m-n)$.	7
a) Is 10 T 1 ?	1 T10 <u>1-10</u>
Is 1 T 10? Is (2,2) ∈ T?	(7.25/ + , 2.7
Is $(8,1) \in T$? b) List five integers n such that n T 1	(Z,Z) & T: 2-2 3
It can be shown that mTn iff $m \mod 3 = n \mod 3$.	(8,1) ET: 8-L

Example 2

Let $X=\{a,b,c\}$ and recall that $\mathcal{P}(X)$ is the power set of X. Define a relation S on $\mathcal{P}(X)$ as follows. For all sets A and B in $\mathcal{P}(X)$, A S B \Leftrightarrow A has the same number of elements as B.

a) is $\{a,b\}S\{b,c\}$? b) $ls \{a\} S \{a, b\}$?

The Inverse of a Relation

Let R be a relation from A to B. Define the inverse relation R^{-1} from B to A as follows: $R^{-1} = \{(y,x) \in B \times A | (x,y) \in R\}.$

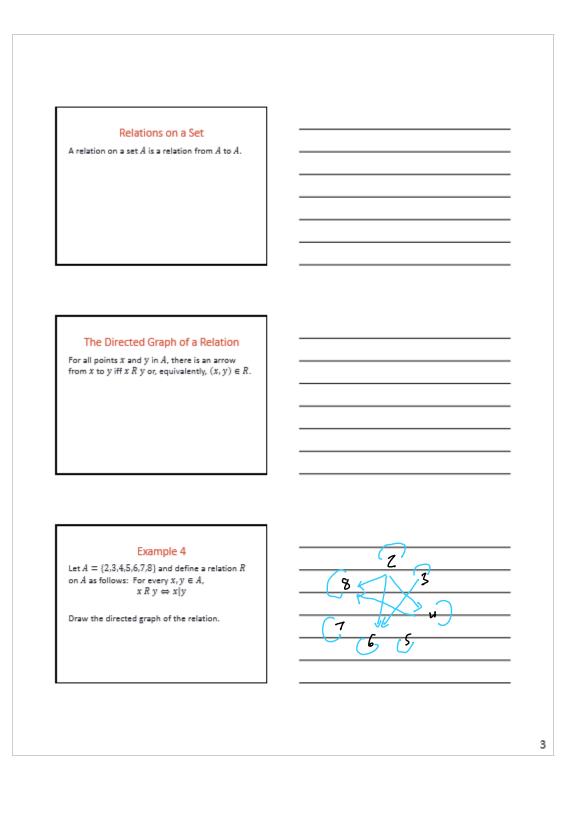
In other words, for all $x \in A$ and $y \in B$, $(y,x)\in R^{-1}\Leftrightarrow (x,y)\in R.$

Example 3

Let $A=\{3,4,5\}$ and $B=\{4,5,6\}$ and let R be the "less than" relation. That is, for every ordered pair $(x, y) \in A \times B$, $x R y \Leftrightarrow x < y$.

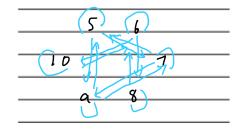
State explicitly which ordered pairs are in ${\cal R}$ and

R	Ř,
5'2 5'4	4,7
3,5	ς, ' 3
Σ ₁ 6 Α, 6 Ε 6	°, У S. И
4,6	<u>s, и</u> b, ч
٤, ٥	6,5



Let $A=\{5,6,7,8,9,10\}$ and define a relation S on A as follows: For every $x,y\in A$, $x\;S\;y\Leftrightarrow 2\,|\,(x-y)$

Draw the directed graph of the relation.



Unions and Intersections of Relations

Given two relations R and S from A to B, $R \cup S = \{(x,y) \in A \times B | (x,y) \in R \text{ or } (x,y) \in S\}$ $R \cap S = \{(x,y) \in A \times B | (x,y) \in R \text{ and } (x,y) \in S\}$

Example 6

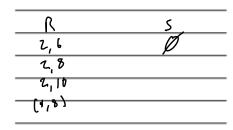
Let $A=\{2,4\}$ and $B=\{6,8,10\}$ and define relations R and S from A to B as follows: For every $(x,y)\in A\times B$,

$$x R y \Leftrightarrow x | y$$

and

$$x S y \Leftrightarrow y = 4 - x$$
.

State explicitly which ordered pairs are in $A \times B$, $R, S, R \cup S$, and $R \cap S$.



Example 7	_	
Define relations R and S on \mathbb{R} as fo $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} y = S = \{(x,y) \in \mathbb{R} \times \mathbb{R} y = S = S = S = S = S = S = S = S = S =$	x }	
Graph R , S , $R \cup S$, and $R \cap S$ in the plane.	: Cartesian —	

Equivalence Relations

Friday, November 11, 2022 2:03 PM

CS1200+Lec ture+27+...

SST Messa at Decreeor or Science and Technology Page 49 No. Street	
_	
Section 8.3	
Equivalence Relations	
Recall: Partition of a Set	
A finite or infinite collection $\{A_0, A_1, A_2,\}$ of nonempty subsets of a set A is a partition of A iff	
1) A is the union of all the A_i , and	
2) the sets A_0, A_1, A_2, \dots are mutually disjoint.	
The Relation Induced by a Partition Given a partition of a set A, the relation induced	
by the partition, R , is defined on A as follows: For every $x,y \in A$,	
$x R y \Leftrightarrow$ there is a subset A_i of the partition such that both x and y are in A_i	
7	

$$0: -6, -0, 0, 3$$

$$1: -5, -4, -1, 1, 4$$

$$2: -5, -2, -1, 1, 2$$

$$3: -6, -3, 0, 3$$

$$3- > 6$$

$$4: -5, -4, -1, 1, 7$$

$$-5: -5, -4, -2, 2, 4$$

$$25-1$$

$$25-1$$

$$25-1$$

$$25-1$$

	(4,4) (3,4) (4,2)
Equivalence Relations Let A be a set and R be a relation on A . R is an equivalence relation iff R is reflexive, symmetric, and transitive.	
Example 2 Let A be the set of all S&T undergraduate students, and let R be the relation defined on A as follows: For every $x, y \in A$, $x R y \Leftrightarrow x$ has the same major as y . Prove that the relation is an equivalence relation.	

Representatives of Equivalence Classes Suppose R is an equivalence relation on a set A and S is an equivalence class of R . A representative of the class S is any element a such that $\{a\} = S$.	
Lemma Suppose A is a set, R is an equivalence relation on A , and a and b are elements of A . If a R b , then $[a] = [b]$.	
Another Lemma Suppose A is a set, R is an equivalence relation on A , and a and b are elements of A . Then, either $[a] \cap [b] = \emptyset$ or $[a] = [b].$	

The Partition Induced by an Equivalence Relation	
If A is a set and R is an equivalence relation on A , then the distinct equivalence classes of R	
form a partition of A ; that is, the union of the equivalence classes is all of A and the intersection of any two distinct classes is empty.	
	1
Congruence mod d	
Let m and n be integers and let d be a positive integer. We say that m is congruent to n modulo d and write	
$m \equiv n \; (mod \; d)$ iff $d \mid (m-n).$	
a (m-n).	
	1
Example 4 Determine which of the following congruence	
relations are true and which are false. $17 \equiv 2 \pmod{5}$	
$3 \equiv -1 \pmod{4}$ $-11 \equiv -5 \pmod{3}$ $6 \equiv 13 \pmod{2}$	

Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = Z \times (Z - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , (a,b) R $(c,d) \Leftrightarrow ad = bc$. a) Prove that R is transitive. Example 5 Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = Z \times (Z - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , (a,b) R $(c,d) \Leftrightarrow ad = bc$. b) Describe the distinct equivalence classes of R .
nonzero; that is, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , (a,b) R $(c,d) \Leftrightarrow ad = bc$. a) Prove that R is transitive. $Example 5$ Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , (a,b) R $(c,d) \Leftrightarrow ad = bc$.
For all pairs (a,b) and (c,d) in A , (a,b) R $(c,d) \Leftrightarrow ad = bc$. a) Prove that R is transitive. $ \begin{array}{c} \text{Example 5} \\ \text{Let } A \text{ be the set of all ordered pairs of integers} \\ \text{for which the second element of the pair is} \\ \text{nonzero; that is, } A = \mathbb{Z} \times (\mathbb{Z} - \{0\}). \end{array} $ Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , (a,b) R $(c,d) \Leftrightarrow ad = bc$.
$(a,b) \ R \ (c,d) \Leftrightarrow ad = bc.$ a) Prove that R is transitive. $(a,b) \ R \ (c,d) \Leftrightarrow ad = bc.$ $(a,b) \ R \ (c,d) \Leftrightarrow ad = bc.$ Example 5 Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = Z \times (Z - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , $(a,b) \ R \ (c,d) \Leftrightarrow ad = bc.$
a) Prove that R is transitive. $ \begin{array}{c} $
Example 5 Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = Z \times (Z - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , (a,b) R $(c,d) \Leftrightarrow ad = bc$.
Example 5 Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , (a,b) R $(c,d) \Leftrightarrow ad = bc$.
Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , $(a,b) \ R \ (c,d) \Leftrightarrow ad = bc.$
Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , $(a,b) R (c,d) \Leftrightarrow ad = bc.$
Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , $(a,b) R (c,d) \Leftrightarrow ad = bc.$
Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , $(a,b) R (c,d) \Leftrightarrow ad = bc.$
Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero; that is, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , $(a,b) R (c,d) \Leftrightarrow ad = bc.$
for which the second element of the pair is nonzero; that is, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , $(a,b) R (c,d) \Leftrightarrow ad = bc.$
nonzero; that is, $A = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Define a relation R on A as follows: For all pairs (a,b) and (c,d) in A , (a,b) R $(c,d) \Leftrightarrow ad = bc$.
For all pairs (a,b) and (c,d) in A , (a,b) R $(c,d) \Leftrightarrow ad = bc$.
$(a,b)R(c,d) \Leftrightarrow ad = bc.$
b) Describe the distinct equivalence classes of R .
Rational Numbers
As we have (at least partially) seen in the
previous example, rational numbers can be defined as equivalence classes of ordered pairs
of integers.

Probability

Monday, November 14, 2022 2:00 PM

CS1200+Lec ture+28+...

See Manage University or Science and Technology	
Section 9.1	
An Introduction to Probability	
Random Processes	
When we say that a process is random, it means	
that when the process takes place, one outcome from some set of outcomes is sure to occur, but	
it is impossible to predict with certainty which specific outcome will occur.	
Examples:	
Flipping a coin Rolling a die	
Kolling 2 die	
Sample Spaces and Events	
A sample space is the set of all possible outcomes of a random process or experiment.	
An event is a subset of a sample space.	
All event is a subset of a sample space.	

Probability of Equally Likely Events	
f S is a finite sample space in which all	
outcomes are equally likely and E is an event in E , then the probability of E , denoted $P(E)$, is	
$P(E) = \frac{\text{number of outcomes in } E}{\text{total number of outcomes in } S}$	
	1
Number of Elements in a Set	
for any finite set A , $N(A)$ denotes the number of elements in A .	
Thus, $P(E) = \frac{N(E)}{N(S)}$	
N(S)	
	1
0	
Standard Deck of Cards A standard deck of cards contains 52 cards	
divided into four suits. The red suits are diamonds and hearts. The black suits are clubs	
and spades. Each suit contains 13 cards of the following denominations:	
A (ace), 2, 3, 4, 5, 6, 7, 8, 9, 10, J (jack),	
Q (queen), K (king)	
line cards J, Q, and K are called face cards.	
The cards J, Q, and K are called face cards.	

Example 1	
Consider a standard deck of cards and imagine that the deck is so thoroughly shuffled that if	
you select a card at random, each card is equally	
likely to be selected. Write each event as a set and compute its probability.	
a) The event that the chosen card is red and not	
a face card. b) The event that the chosen card is black and	
has an even number on it.	
Example 2	
Suppose that each child born is equally likely to be a boy or a girl. Consider a family with exactly three children. Let	
BBG indicate that the first two children born are boys and the last child born is a girl.	
 List the eight elements in the sample space whose outcomes are all possible genders of the three children. 	
 Write each of these events as a set and find its probability. 	
a) The event that exactly one child is a girl. b) The event that at least two children are girls.	
c) The event that no child is a girl.	
N - 1 - 255	
Number of Elements in a List	
If m and n are integers and $m \le n$, then there are $n - m + 1$ integers from m to n inclusive.	

If the largest of 56 consecutive integers is 279, what is the smallest?

Example 4

How many positive two-digit integers are multiples of 3?

What is the probability that a randomly chosen positive two-digit integer is a multiple of 3?

Example 5

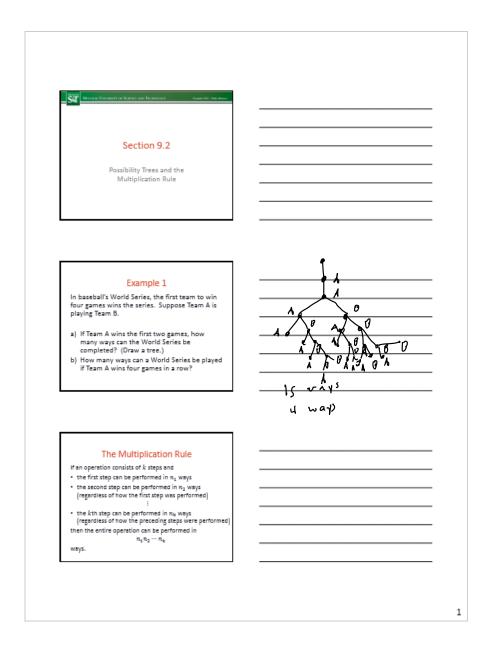
There are three doors on the set for a game show – let's call them A, B, and C. If you pick the correct door, you win the prize. You pick door A. The host of the show then opens one of the other doors and reveals that there is no prize behind it. Keeping the remaining two doors closed, he asks whether you want to switch your choice to the other closed door or stay with your original choice of door A. What should you do if you want to maximize your chance of winning the prize – stay or switch? Or, would the likelihood of winning be the same either way?

3 for switch

Possibly Trees and Multiplication Rule

Wednesday, November 16, 2022 2:01 PM

CS1200+Lec ture+29+...



Example 2

Hexadecimal numbers are made using the sixteen hexadecimal digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

For example, 9A2D is a hexadecimal number. How many hexadecimal numbers begin with one of the digits 3 through B, end with one of the digits 5 through F, and are 5 digits long?

96117611761176115
405, 504

a a 87

Example 3

How many integers are there from 100 through 999? How many integers from 100 to 999 have distinct digits?

What is the probability that a randomly chosen threedigit integer has distinct digits?

How many odd integers are there from 100 through 899?

How many odd integers from 100 to 899 have distinct digits?

	9a9-100+1=	900 or
chose	a 610x 10	>=900
J:30 (4)		
	a(a)(8)=	648
		a00
	8L10)(s)=	400
	(5)	14x+ dig;t
	(0)	n: Me
	(N)	nithe first
	•	

5084

Permutations

A permutation of a set of objects is an ordering of the objects. For example, the set of elements a,b, and c has six permutations: abc,acb,bac,bca,cab,cba

For any integer $n \geq 1$, the number of permutations of a set with n elements is n!.

Example 4

Six people attend the theatre together and sit in a row with exactly six seats.

- a) How many ways can they be seated together in the
- row?

 b) Suppose one of the six is a doctor who must sit on the siste in case she is paged. How many ways can the people be seated together in the row with the doctor in an aisle seat, assuming there is an aisle at only one end of the row?

 c) Repeat part (b) assuming that there is an aisle at both ends of the row.

6	1	=720
n		

71

Example 4

Six people attend the theatre together and sit in a row with exactly six seats.

d) Suppose the six people consist of three married couples and each couple wants to sit together with the older partner on the left. How many ways can the six be seated together in the row?

362361) 56

r-permutations

An r-permutation of a set of π elements is an ordered selection of τ elements taken from the set of n elements.

The number of r-permutations of a set of n

elements is $P(n,r) = n(n-1)(n-2)\cdots(n-r+1)$ or, equivalently,

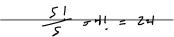
$$P(n,r) = \frac{n!}{(n-r)!}$$

How many 3-permutations are there of a set of 8 objects?

8!
(8-25)
8 (7)(6) = 776

Example 6

Five people are to be seated around a circular table. Two seatings are considered the same if one is a rotation of the other. How many different seatings are possible?



Example 7

In a six-cylinder engine, the even-numbered cylinders are on the left and the odd-numbered cylinders are on the right. A good firing order is a permutation of the numbers 1 to 6 in which right and left sides are alternated. How many possible good firing orders are there which start with a left cylinder?

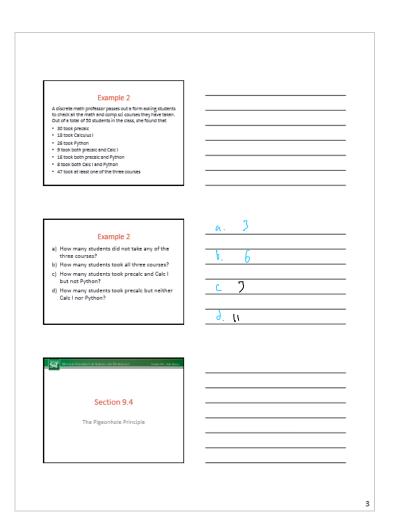
Addition Rule and Pigeonhole Principle

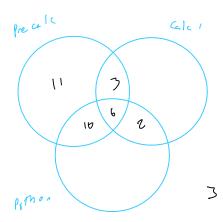
Monday, November 28, 2022 2:03 PM

CS1200+Lec ture+30+...

SAT Messar Decrease or School and Technology frame the has now	
Section 9.3	
Counting Elements of Disjoint Sets: The Addition Rule	
The Addition Rule Suppose a finite set A equals the union of k distinct mutually disjoint subsets A_3, A_2, \dots, A_k . Then,	
$N(A) = N(A_1) + N(A_2) + \dots + N(A_k).$	
The Difference Rule If A is a finite set and B is a subset of A, then	
N(A-B)=N(A)-N(B).	

Example 1	53+ 52663 + 526633 +52633 +5263
In Python, identifiers must start with one of 33 symbots: upper- or lower-case letters in the Roman sighabet or an underscore. The little otherster may stand alone, or it may be followed by any number of additional characters from a set of 83 symbots (the 33 above plus the ten digital). Certain keywords are set assise and may not be used — in one implementation, there are 33 such reserved keywords, none of which has more than eight characters. Now many Python identifiers are there that are less than or equal to eight characters. In length?	= 212, 137, 167, 1002, 84 a
The Probability of the Complement If S is a finite sample space and A is an event in S , then $P(A^c) = 1 - P(A).$	
The Inclusion/Exclusion Rule If A , B , and C are any finite sets, then $N(A \cup B) = N(A) + N(B) - N(A \cap B)$ and	
$\begin{array}{l} N(A \cup B \cup C) \\ = N(A) + N(B) + N(C) - N(A \cap B) \\ - N(A \cap C) - N(B \cap C) + N(A \cap B \cap C) \end{array}$	





$$N(P \cup C \cup Y)$$

= $N(P) + N(C) + N(Y) - N(P \cap C)$
 $-N(P \cap Y) - N(C \cap Y) + N(P \cap C \cap Y)$
 $47 = 30 + 18 + 26 - 4 - 16 - 8 + N(P \cap C \cap Y)$
 $N(P \cap C \cap Y) = 6$

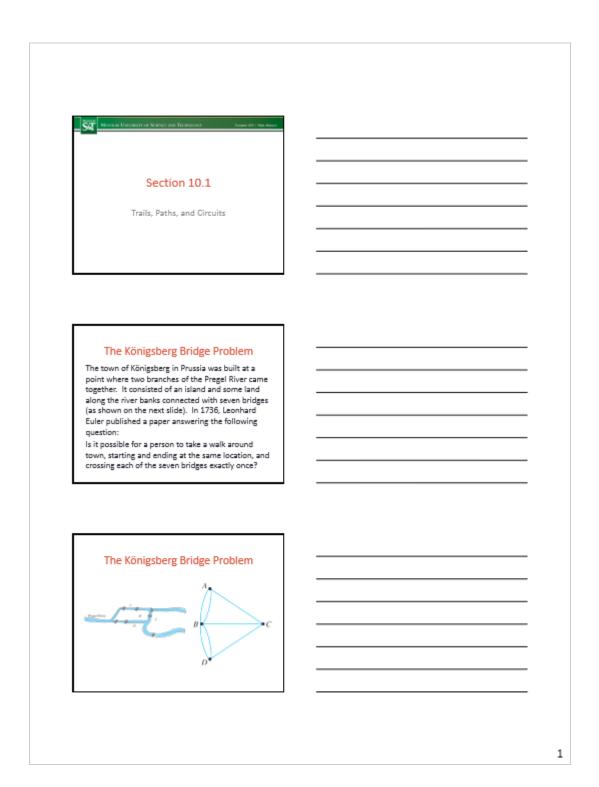
The Pigeonhole Principle A function from one finite set to a smaller finite set cannot be one-to-one. There must be at least two elements in the domain that have the same image in the co-domain.	
Example 3 A small town has only 500 residents. Must there be 2 residents who share the same birthday?	Yus 500 7 366
Why?	
Example 4 Assuming that all years have 365 days and all birthdays occur with equal probability, how large must it be so that in any randomly chosen group of it people the probability that two or more have the same birthday is at least \$\frac{1}{2}\$?	2.3

Example 5 Given any set of four integers, must there be two that have the same remainder when divided by 3? Why?	> remainder poor it lities < 4 integer	
Example 6 How many cards must you pick from a standard deck of cards to be sure of getting at least one red card?	27	7 6 5 43 8
	5	

Trails, Paths, Circuits

Monday, December 5, 2022 2:02 PM

CS1200+Lec ture+31+...



The Königsberg Bridge Problem	
Is it possible to find a route through the graph that starts and ends at some vertex and traverses each edge exactly once?	
Walks]
Let G be a graph and let v and w be vertices in G . A walk from v to w is a finite alternating sequence of adjacent vertices and edges of G . Thus, a walk has the form $v_0e_1v_1e_2v_2e_2\cdots v_{n-1}e_nv_n$	
where the v_i 's represent vertices, $v_0 = v$, $v_n = w$, and the a_i 's represent edges. Further, note that v_{i-1} and v_i are the endpoints of a_i . The trivial walk from v to v consists of the single vertex	
v.	
	7
$\frac{\text{Trails}}{\text{A trail from } v \text{ to } w \text{ is a walk from } v \text{ to } w \text{ that}}$	
does not contain a repeated edge.	

Paths	
A path from v to w is a trail that does not	
contain a repeated vertex.	
Closed Walks	-
A closed walk is a walk that starts and ends at the same vertex.	
tne same vertex.	
Circuits A circuit is a closed walk that contains at least	
A circuit is a closed walk that contains at least one edge and does not contain a repeated edge.	

Sim	nle	Cir	eni	it
201111	P1~	-		

A simple circuit is a circuit that does not have any other repeated vertex except the first and

Summary of Definitions

	Repeated Edge?	Repeated Named	Starts and Ends at the Same Point?	Mart Contain of Least One Edge?
Walk.	oliowed	allowed	allowed	80
Treil	190	allowed	allowed	80
Porti	100	90	ne	80
Closed walk	allowed	allowed	591	80
Circuit	80	allowed	501	305
Negle circuit	100	first and last only	yes	pan

Example 1

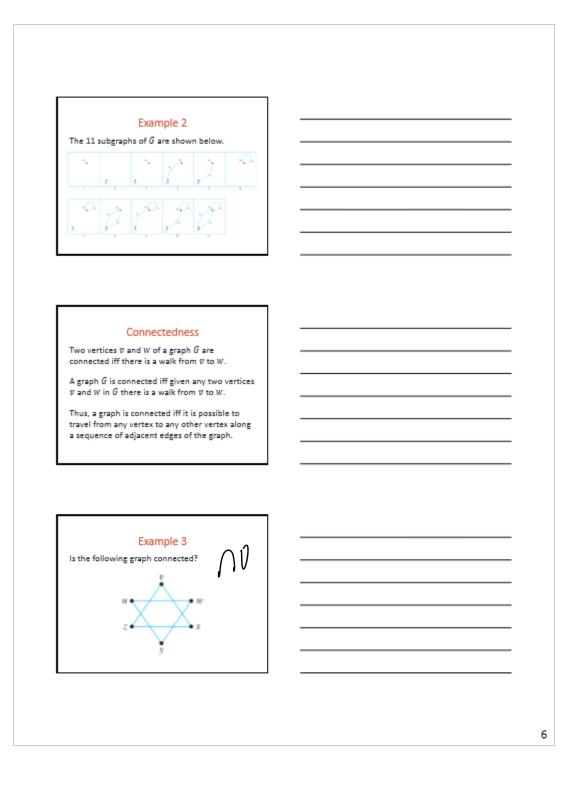
Using the graph above, determine was walk is a trail, path, circuit, or simple circuit.

- $\mathbf{a}\} \quad v_1 e_1 v_2 e_3 v_3 e_4 v_3 e_5 v_4$

- c) n2n2n4n2n2n9n2 C; CAi+
 p) e1e2e2e2e9 Av (k

4.4

Example 1	
Using the graph above, determine whether each walk is a trail, path, circuit, or simple circuit. d) $v_2v_2v_4v_4v_8v_8$ e) $v_1e_1v_2e_1v_1$ Closes walk	
f) v ₂	
Subgraphs	
A graph H is said to be a subgraph of a graph G iff every vertex in H is also a vertex in G , every edge in H is also an edge in G , and every edge in H has the same endpoints as it has in G .	
Example 2	
List all subgraphs of the graph G with vertex set $\{v_1,v_2\}$ and edge set $\{s_1,s_2,s_3\}$, where the endpoints of s_1 are v_2 and v_2 , the endpoints of	
θ_2 are v_1 and v_2 , and θ_3 is a loop at v_1 .	
, e ₂	



A Lemma about Connectedness

Let G be a graph.

If vertices v and w are part of a circuit in G and one edge is removed from the circuit, then there still exists a trail from v to w in G.

If G is connected and G contains a circuit, then an edge of the circuit can be removed without disconnecting G.

Connected Components

A graph H is a connected component of a graph G iff

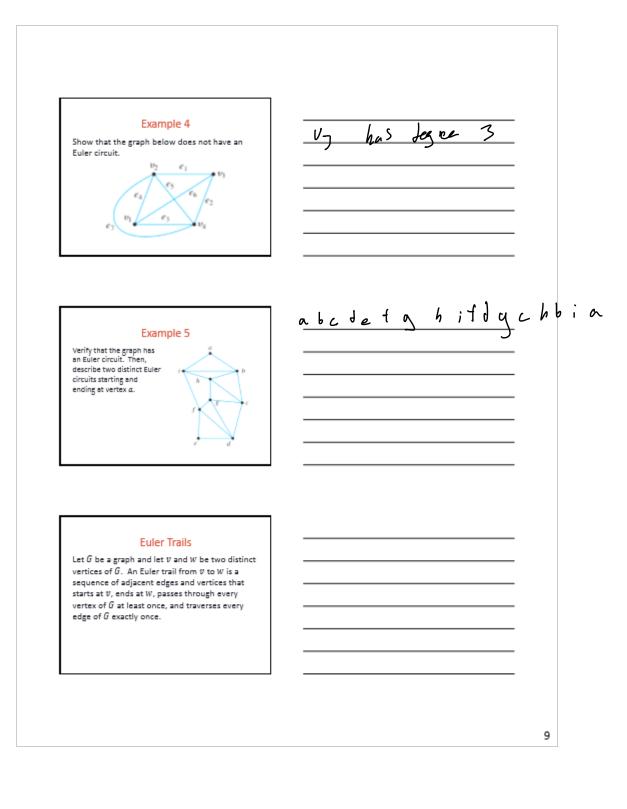
- H is a subgraph of G;
- ii. H is connected; and
- iii. no connected subgraph of G has H as a subgraph and contains vertices or edges that are not in H.

In other words, a connected component is a connected subgraph of largest possible size.

Example 3 (continued)

Find the number of connected components for the following graph.

Euler(ian) Circuits Let G be a graph. An Euler (or Eulerian) circuit of G is a circuit that contains every vertex and every edge of G. In other words, an Euler circuit for ${\cal G}$ is a sequence of adjacent vertices and edges in ${\cal G}$ that has at least one edge, starts and ends at the same vertex, uses every vertex of G at least once, and uses every edge of ${\cal G}$ exactly once. Theorem A graph ${\cal G}$ has an Euler circuit iff ${\cal G}$ is connected and every vertex of G has positive even degree. The Königsberg Bridge Problem Is it possible to find a route through the graph that starts and ends at some vertex and traverses each edge exactly once? In other words, does the graph have an Euler circuit? 8



Theorem Let G be a graph and let v and w be two distinct vertices of G. There is an Euler trail from v to wiff G is connected, v and w have odd degree, and all other vertices of $\boldsymbol{\mathcal{G}}$ have positive even degree. The Königsberg Bridge Problem Does the graph have an Euler trail? **Hamiltonian Circuits** Given a graph G, a Hamiltonian circuit for G is a simple circuit that includes every vertex of ${\cal G}$. In other words, a Hamiltonian circuit for ${\cal G}$ is a sequence of adjacent vertices and distinct edges in which every vertex of ${\cal G}$ appears exactly once except for the first and last, which are the same. 10

Example 6 Find a Hamiltonian circuit for the graph
--

I	avel	in a	5	ales	na	Problem Us Us
1/6	٧,	V	, N	V_z	<i>v</i> >	Vs V4
						_

Hamiltonian Circuits

If a graph ${\cal G}$ has a Hamiltonian circuit, then ${\cal G}$ has a subgraph H with the following properties:

- i. H contains every vertex of G
- ii. H is connected
- iii. H has the same number of edges and vertices
- iv. Every vertex of \boldsymbol{H} has degree 2.

Example 7 Show that the graph cannot have a Hamiltonian circuit.

Handshake Theorem and Trees

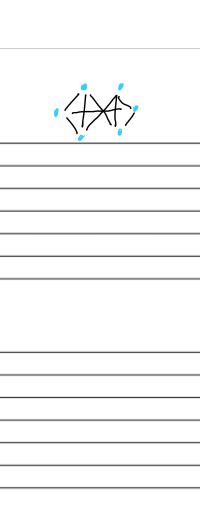
Wednesday, December 7, 2022 1:59 PM

CS1200+Lec ture+32+...

Sections 4.9 and 10.4 The Handshake Theorem An Introduction to Trees Total Degree of a Graph The total degree of a graph is the sum of the degrees of all the vertices of the graph. Example 1 Find the degree of each vertex of the graph G shown below. Then, find the total degree of the graph.	Montas Decreers of Science and Translation tower etc. No. mone	
The total degree of a graph is the sum of the degrees of all the vertices of the graph. Find the degree of each vertex of the graph G shown below. Then, find the total degree of the graph.	The Handshake Theorem	
Find the degree of each vertex of the graph G shown below. Then, find the total degree of the graph.	The total degree of a graph is the sum of the	
	Find the degree of each vertex of the graph G shown below. Then, find the total degree of the graph.	+2+3+4± (b

The Handshake Theorem If G is any graph, then the sum of the degrees of all of the vertices of G equals twice the number of edges of G .	
Corollary: Total Degree of a Graph The total degree of a graph is even.	
Example 2 Either draw a graph with the specified properties or show that no such graph exists.	
a) A graph with four vertices of degrees 1, 1, 2, and 3. b) A graph with four vertices of degrees 1, 1, 3, and 3.	

Corollary: Vertices of Odd Degree In any graph there is an even number of	
vertices of odd degree.	
Example 3	<u>N</u> v
In a group of 15 people, is it possible for each person to have exactly 3 friends?	
Simple Graphs	
A simple graph is a graph that does not have any loops or parallel edges.	



Complete Graphs

Example 4

A simple graph with six edges and all vertices of

Either draw a graph with the specified properties or explain why no such graph exists.

degree 3.

Let n be a positive integer. A complete graph on n vertices, denoted K_n , is a simple graph with n vertices and exactly one edge connecting each pair of distinct vertices.

Trees

A graph is said to be circuit-free iff it has no circuits.

A graph is called a tree iff it is circuit-free and connected.

A trivial tree is a graph that consists of a single vertex.

A graph is called a forest iff it is circuit-free and not connected.

Parse Trees In the study of grammars, trees are often used to show the derivation of grammatically correct sentences from certain basic rules. Such trees are called syntactic derivation trees or parse trees. Example 5 A very small subset of English grammar, for example, specifies that 1. a sentence can be produced by writing first a noun phrase and then a verb phrase; 2. a noun phrase can be produced by writing an article and then a noun; a noun phrase can also be produced by writing an article, then an adjective, and then a noun; 4. a verb phrase can be produced by writing a verb and then a noun phrase. Example 5 The derivation of the sentence "The young man caught the ball" from the above rules is described by the tree shown below.

Trees in Linguistics	
In the study of linguistics, syntax refers to the grammatical structure of sentences, and semantics	
refers to the meanings of words and their interrelations.	
A sentence can be syntactically correct but semantically	
incorrect, as in the nonsensical sentence "The young ball caught the man," which can be derived from the	
rules given on the previous slides.	
A sentence can contain syntactic errors but not semantic ones, as, for instance, when a two-year-old	
child says, "Me hungry?"	
	1
Lemma	
Any tree that has more than one vertex has at	
least one vertex of degree 1.	
Characterizing Trees	
Let T be a tree. A vertex of degree 1 in T is called a leaf (or a	
e vertex or degree 1 in 1 is called a lear (or a terminal vertex).	
A vertex of degree greater than 1 in T is called an internal vertex (or a branch vertex).	
an internal vertex (or a branch vertex).	
	J

Theorems	
For any positive integer n , any tree with n vertices has $n-1$ edges.	
For any positive integer n , if G is a connected graph with n vertices and $n-1$ edges, then G is a tree.	
Corollary If G is any graph with n vertices and m edges (where m and n are positive integers) and $m \ge n$, then G has a circuit.	
	V
Example 6 A connected graph has twelve vertices and eleven edges. Does it have a vertex of degree 1?	