Sets

Monday, August 22, 2022

be ¥

1:59 PM

A g Al
8,33 =
&
&
A
IR
13
e
IRI\M ng

i e

S

&

Sv 6 Z | 0% re2R flo

A <@

A 27
(A =0) & (0 &M

Ordered P

(a,v) ¢

(o, )
Ocdestd  5- toples

CPY
/

Cortesan Pesdoed

Ertusey,

se Yof

st

set of wull
set of

Ce, i) i

S w oset

Aser 3 congllh  detnred

£113 = 34
§138 #

-‘.l :’I i’g"J
(e} h'v\n\-
ree |

o oll
F odall

pe sh2t zeal
nuk whive renl

4.,44‘&1:("’% o (

ol

set of all

SIPE e et 0Pall  »

set Pal

u subsetr of P
a0t

A
A s

ozl od bd

= 5543'2 «,b3%

fﬂ)

ArA ¢ . rha

o svbsey 0ot 5
Pripz,f Subset

by what e gpmad

19

ﬂlﬂ ﬁ%., h-ld

S

A Eappi, bovan, onor?
v S aeriwr, boof’cqn;-ll les-?

Ar07
E@-”‘ﬁ. aq, | vk )

(o”lb, becr/
(2pp'¢, comel)

(-'.”46, deer)

(18, aclmk)
(lldl.. cbeer)
(lM.q ! MM1>

Jur\?

(12ma.

Discrete Mathematics Page 1

Sv :Jd
A i’ea e

are
fhet P
logs Hov

PE3

SaF;P:l&
27



“serign gve—
( lemen ! MMI)

(leme , Ju- )}
A= 50,3 = bt siv;hS
A'-' i?,q,lr} ;UJ' r'"lf llﬁr‘l }‘W Cﬁl"'q,"l;'zj hww vrmele f’J’
PIPIP
Pc"’
pl'lq’
0P
o fP
e
roe
el ntions
thy = (hy) ER

'Fﬂi 2 L‘)‘ [1) gn
Ay hﬂdqﬂf Ko Bis e totonnn oF R

A* 27,,",“; val P 26,!,!0}
(e, ER mems Nt L fbges
ReEL ey LrE) 210, (362, (4303
26
95%
a/\we

L ewery drarn + 00 455 Fics Flurmst Ly, 097N pais B
a0 F~o biad oMl pass ha Mo s0me Py elengy

0oran - A
(o tmnn - D

Puna“; (4%

6“‘?“ g Two fat Sbﬁ, Vib) vl ond E£C6) %'—a
Direchd oyrrplh,

Discrete Mathematics Page 2



Variables and Sets
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Sections1.1and 1.2

What |5 Discrete Mathematics?

Dizcrete mathematics describes processes that

consist of a sequence of individual st=ps.

This contrasts with calculus, which describes

processes that change in 3 continuous fashion.

The Challenge of This Course

= There are @ lot of different topics

= Laok for the cannections!

= Many togics require you to think differently
—This ism't soary — it's wery usefull

= There is some background information we
me=d that isn't wery exciting.

— Doer't whonry — it heads 1o more inkeresting stufr!
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My Prediction

Far many of you, this will be the most

interesting — and enjoyable — mathematics

courss you've taken!

Variables

& warisble is 8 piscemalder to use whan 'r'\ﬂlJ want to talk

about something but either

* You imagine that it has one or mare walues but dont
know precisely what they are
= Typical idem in alpctes or programming

or
* You want whatewer you say about itto be equally

true for Bl ebements in & given set while avoiding

amibiEuity

= Powerlul id=w in Socrclz malé

Example 1

Use wariables to rewrite the sentence maore

formally and remove ambiguity

If the cube of @ real number is nonnegatiee,

then it is nonnegative.
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Important Types of Mathematical statements

A universal statement says that a cartin
property is true for all elements in 3 s=t

Examples:

= All oranges are fruits.

= Ewery ewen number is divisible by 2.

Important Types of Mathematical statements

A conditional statement says that if one thing is

true then some other thing also must be true.

Examples:

If your lunch contains an orange, then it
contains 3 fruit.

If @ mumber is divisiblz by 12, then the
mumber is divisible by 4.

Important Types of Mathematical Statements

An =xistential statement says that @ property

holds for at least one element of & set.

Examples:

= There is 3 caffeinated beverage in the Cole
machine.

* There is 3 number between 20 and 30 which is
divisible by 12.
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Combining Statement Types

Urniversal Conditional Statemants are bath

universal {applicable to every element in a set}

and conditional {has an if-then component].

Example:

* For svery athlete T, if Tis a quarterback, then

Tis a football player.

Example 2

Rewrite the universal conditional statement in a

way which makes its conditional nature explicit
but its universal nature implicit.

Faor svery athlete T, if Tis a quarterback, then T
is a foothall player.

Example 3

Rewrite the universal conditional statement in a

way which makes its universal nature explicit
but its conditional nature implicit.

For =very athlete T, if Tis a quarterback, then T
iz a foothall player.
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Combining Statement Types

Universal Existential Statements are first

universal {applicable to every element in a set}

and then existential (asserting the sxistence of
something].

Example:

= Ewery football t=am has a tallest player.

Combining Statement Types

Exist=rtizl universal statements first assert that

an object exists and then indicate the object
satisfies 2 certain property for all things of 2

certain kind.

Example:

= There is a player who is at lzast as tall as every
persan an the football team.

The Language of Sets

Let § be 3 set.

= ¥ € § means X is an element of §

= X € 5 means ¥ is not an element of £
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Set-Roster Notation

S=t-roster notation inwolves writing all slements
of a set between s=t bracksts.

Examples:
{1,234.5]
1273, 0, 50
[123,..]

The Axiom of Extension

A set is completely defined by what its slements
are.

Important Implications:

= The order in which elements are listed does
not matter

= Elzments may be listed maore than once
withowt impacting the nature of the set.

Example 4

What is the difference betwe=n the following
sets?t

{1,234.5]
[543.21]
[13.5.2,3,2}

Noth

N\a
)
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Example 5

Heow many elements are in 2ach set?

(11223) B

Ly P

Special Sets
z The et of all integers
1] The set of all rational numbers
Becall: Bational numbers are
quotiznts of two integers.
K The set of all real numbers
Special Sets
E* Thie set of positive real numbers
E~ Thie set of negative real numbers

E™™"%  The set of nonnegative real numbers

Similar notation works with Zand @
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Set-Builder Notation

Let § denote a setand =t P b= a property that
elements of § may or may nat satisfy. Than, we

can define a set as

ix € 5|F}

which means
“the s=t of all X in § such that P is satisfied”.

Example &

Write the following set using set-buwilder
motation.

The set of all nonnegative integers less than 27.

fr o Z | 0% no2

Subsets

15 A and B are sats, then 4 is czlled 2 subset of B
[denoted A C B) if and only if every element of

A iz also an element of B

Farmial definition:

A £ B means that for every element ¥,

ifx s Athenx € 5.
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Subsets

For A to not be 3 subset of B [denoted 4 € B,

at least one =lement of A is not an element of B.

Proper Subsets

15 A and B are sats, than 4 is czlled 2 proger

subset of B |denoted 4 © B} if and only if every
element of 4 is also an element of B but there is

at least one =lement of B which is not an
element of 4.

Example 7
Whiich of the folloraing are true statements®

2= ({123 4 ::51.2.3:*
HEFEE (2} = :1.1.3:-"

25-':1|.-'2|.'35'|a‘ 1:§|1|.|21.:3J|"

|2:E{:1|.{21.:3|:.,, [z} = [[2) {2} (3} {
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Sets, Relations, Functions, Graphs
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Ordered Pairs

Siven elements 4 and b, the symbal (g, B}
dengtes the ordered pair consisting of @ and B
together with the specification that 4 is the first

element of the pair and b is the second =lemant.

Two ordered pairs (&, b)) and (g, d) are equal if

and only if@ = cand b = d_

Ordered Pairs as Sets

The ordered pair {4, B iz 2 st of the form

({z}. {a. b}}

1§ @ and B ar= distinct, then the two sets ars

distinct and & is in both whereas B is only in the
second set, allowing us to distinguish between o

and B and imply an ordering.
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Ordered n-tuples

The ordered 11-tupl=

(%0 Xz0 w20 )

consists of the [not necsssarily distinct)

elements Xy, X5 o= X, together with the defined
ordering.

Cartesian Products

Given sets 4,, 44, .. A, the Cartesian product

Ay sy w-x Ay
of Ay, Az v, A is the set of all ordered R-tuples

[y gy ey By )
where g, ed, 0, €4, .o, g4,

Example 1

Let A = {apple, banana, lemon}

and B = {aardvark, bear, camel, deer}

Find A % B
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Strings

Let #1 be = positive integer. Given a finit= set 4. a

string of length 1 ower A is an ardered N-tuple of
elements of A written without parentheses or

commas.

The elements of 4 ars called the characters of

the string.

Strings

The null string over 4 is d=fined to be the string

with no characters, sometimeas denoted A, and is
said to have length z=ro.

If A = [0,1}, then a string over A iz saidto b= a
bit string.

Example 2

Let 4 = {p, q,r}. Listall strings of length thre=

over A which contain two or more ps.
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Relations

& refation A from s set 4 e set 8 e subest of 4 X F.

Giwen 8n oroered pir (x, ¥} 0 A x F, we say

¥ is relmbed ta ¥ by A i and oaly it (£, ) s i R.

x Ry meansthet (x,¥) € R

XAy means that (x,y) € &

Aisthe domain of & and 2 iz the codomain of 8.

Example 3
Let 4 = {2,534} and B = {6,8,10} and defin= =

relation B from A to B as fallows:

(%, ¥) € B means th::fis aninteger

a] Writ= F as a s=t of ordered pairs.

b} What are the domain and codomain of 7

c) Draw an arrow diagram for R.

Functions

A& function F from a set A to a s=t B is a relation

with domain A and codomain B which satisfies
the following two properties.

1. For every elament ¥ € 4, there is an elemant
¥ € B suchthat {x,¥) e F.

2. Forall elements X € A and y,5 € B,
(%, ¥)EFand (x,3) € F then ¥ = 1.

Discrete Mathematics Page 15



Functions {less formally)

A& relation F from A to B iz a function if and only

iff

1. Every element of 4 is the first element of an
ordered pair in F

and
2. Mo twao distinct ordered pairs in F hawve the

same first element.

Example 3 {continued)
Let 4 = {2,534} and B = {6,8,10} and defin= =

relation B from A to B as fallows:

(%, ¥) € B means th::fis aninteger

) Iz B a function?

Example 4

Define a relation £ from K to K as follows:

Forany (r, ¥} e K = K.

(x,¥) & £ means that x¥ + y* = 1.

Is £ @ function? Explain.
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Function Notation

If A and B are sets and F iz a3 function from
Ao B, then given any element X in A, the
unigue elermnent in B that is related o X by F is
denot=d F{x), which iz read *F of x™

Example 5

Define functions f and g from K to B by the
following formulas:

Forevery ¥ € R,
'
fixd=

landglri=x+1

=1

Dives f = g7 Ewplain.

Example &
Abhbi= ez in Lemon Growe. Her frisnds thers are
Boh, Cirdy, and Dianz.
Abbie used to live in Mango. Her friends there
were Exther, Fran, and George.

Dizna and Fram are cousins. They used to fve in
Miceville where their best fri=nd was Harriet.
Hairriet’s brother is lan, and lan is his own bt
frimnd.

Cindy's roommate is lanice, who met Harriet 22 2
summer camp in Drange Beach.

Draw a diagram to represent thess= relationships.
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Graphs

& graph (7 consists of two finite sets: a

monempty set V() of wartices and a set E{F)

of edges, where each edge is assodated with a
set consisting of sither one or two verticss

called its =ndpoints.

The correspondence from =dges to endpoints is

called the =dge-endpoint function.

Graphs

An =dge with just one endpoint is called a loop.

Two or more distinct edges with the same set of

endpaints are said ta be parall=l.

An =dge is said to connect its endpoints.

Two vertices connected by an edge are adjacent.

A wertzx that is an endpoint of @ loop is adjacent
to itself.

Graphs

An =dp= is said to be incdent on =ach of its

endpaints.

Two edges incident on the same sndpoint are

called adjace=nt.

A wertew an which no edges are incident is call=d
isolated.
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The Degree of a Vertex

If iz a graph and ¥ is a vertex of f, then the

degree of 7, denoted ﬂEg:'I.: ). equals the

number of edges incident on #. An edge that is
a loop is counted twice.

Directed Graphs

A& direct=d graph, or digraph, consists of two

finite sets: a nonempty set V(G ) of vertices and
a st D{(T) of directed edges, where each edze

iz associated with an ordered pair of verticss
called its =ndpoints.

|f =dg= £ is associated with the pair (v, w)aof
wertices, & is the directed =dge from ¥ to W,

Example 7

Coler Mineun med i B wdjeceel alat=a caing e feweal colen zeauble.
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Example 7

Caolor FcveSe mrd ita S mijaccel alatca waing G fowsal colon poasiblke.

Color tBc roal of fhe msp waing (Bc fowcal colonipoxebke.

The Four-Color Thearem

Any grographic map, however complex, can be

colored using just four colors such that no two
adjacent regions have the same colar.

Discrete Mathematics Page 20



Example B

& department wants ta schedul= finals so that
no stedent has more than one =xam on 3 given
day. The vertices of the graph on the next slide
show the courses being taken by mars than one
stwdent, with an edge connecting two verticss if
there is 3 student in both cowrsss. Find 2 way to
color the vertices of the graph so that na two
adjacent vertices have the sams colar and
explain how to use the result to schedule the

finals.

Example B

Discrete Mathematics Page 21
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Logical Form and Equivalence
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What Is Logic?

Logic is the science of necessary inference.

Logical anahysis will nat help you determine the
intrinsic merit of an argument’s contsnt.

Logical analysis will help you analyze an

argument to determine whether the truth of the

conclusion follows necessarily from the truth of
the premises

Statements

& staternent iz 3 sentence which is either true or

false but net both,
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Bxample 1
Which of the following sentences are

statements?

a) Joz iz 3 physics majer o
b} 4°=E

o x=9 *®

EBxample 2

Regr

If the program synta is faul
computer will g

then the

1§ the computer genzrates an errer massage,

then the program will nat run.

Therefore, if the program syntax is faulty, then

the program will not run.

ent the common form of the argument
using l=tters to stand for component sentences.

= an error message.

Symbols in Logical Expressio

= Thersfore
M And
Vooor

~ Mot (sometimes - isused instead)

But

Sametimes but is used in pla
second part of the sentence is somehow

surprising.

of and when the

EBxample 2

Consider the fallowing sentence:
Steve has long arms but he is nat tall.

Translate from English t symbals, letting
1 = Stave has lang arms
t = Steve s tall

1 A~Y

Neither-Nor

Neither p nor § means ~p A~g.
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Example 3
Let P represent 1 < X,
Let g representx = 1.
Lett representx < 7.

Writs the following insquality as a logical
statement.
12x<7

[qu’)/\ r

Truth Values

Far sentences to be state

ents, they must have
well-defined truth values — they must be sither
true or false.

Our goal is to analyze the truth of compound
statements based on the truth values of the
statements which composs tham.

Negation

If p is 2 staterment variable, ti
~ p [read "not p7).

egation of P is

~ 1 has the opposite truth valus from p.

Conjunction

1f 5 and q are statement varables, the
conjunction of p and g is p A § {read “p and 7).

P A Qis true if and only if both pand g are true.

Disjunction

If  and g are stat=ment variables, the
disjunction of pand g is v § {read “p or g°).

P v s falsz i and orly i bath  and § are falze.

= [evr

Compound Statements

A statement form (or propasitianal form) iz an
expression made up af stabement varisbles and logical
connectives (such as A, V, and -] that becomes &
statement when actusl statements are subistituted for
the component stetement varisales.

The truth tasle for s gheen stabement form cispleys the
truth valuses that correspend ta sl passitie
comEinstions of truth values far the compenent
statement variatles.
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EBxample 4

Construct 3 truth table for the statzment.

pAg pv LPAgD
T

pvipagl

- =

T{W AT
| ANAAs
n"h .
.

an
every po:
their sta

1§ P and § are logically equivalent, we write

F=qQ.

Example 4 {continued)

Ar)  Bpug) Ac
P n v P\Ia, f?’ CF\IQ,)T\/ U P %_r
T
TR LT 1
Example 5 T F T .r P T p
ey e T ey 7 e 7
2 G 10 FETT T 1 T
% eTE 1 ¢ y A
FFT 13 4
Fpp 12 F F e
De Morgan's Laws ~ ~yg, 4 A % 'JL PA h' ) v V ~ o
~pag) = ~pvg P ?{_ E F T . P r c
~pvg) = ~pang '; F- F T F T )
e v T F " ! T
poe T ¢ T
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Tautclogies
A tautology is 3 stat=ment form that is akways

true regardless of the truth values of the
individual statements.

Simple example:
VD

Contradictions
A contradiction is a statement form that is

ahways falsz regardless of the truth values of the
individual statements.

Simple example:
panp

EBxample 7
Writs  truth table for the statement form. Is it

2 tautology, 3 cantradiction, ar neither?

(pa~glaivpvg)
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Conditional Statements
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Conditional Statements

If ¢ and J are stat=ment variables, the

conditional of § by P is § = J (read “if ¢ then §°
or “g imglies 7).

P = g is false when P is true and g is fals=;

otherwiss, it istrus.

P is called the hypothesis (or antecedent].

q is called the condusion |or conseguent).

Conditional Statements
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Vacuously True Statements

Consider the following statement:

Wl =1 thenl= 2.
Since the hypothesis of this statement is false,
the entire statement — as 3 whole — is true.

Such statements are called vacuously true jar
true by default).

Example 1

Use trsth tables to show that
FHg=~pvy

RNH T
oA s
w1 |
At nd

Example 2 ~ LM’U?‘

Uze De Morgan's Laws and the result of Example

1to show that
~pgl=pang

P A~%
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The Megation of Conditional Statements

The negation of “if P then g~ is logically

equivalert to "f and not 4.7

Warnine
Warning!

The negation of an if-then statement does not
start with the word !

Contrapositive vs. Converse

The contrapositive of f = § is ~g — ~B.

A conditicnal statemant and its contrapositive
are logically eguivalent.

The corverse of B = Jisg = 1.

A conditional statement and its converse

are not logically =quivalent (although, in somsa
cases, the converse may be true when the

conditional is true).

Inverse
The inverse of p = g is ~p = .

A conditional statement and its inverse
are not legicslly =quivalent

The converse and inverse of a conditional
statement are logically equivalent to =ach other.
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Example 3

Writs the contrapositive, converse, and inverss

of the following statement:

If taday is Labor Day, then yesterday was
Sunday.

| - toleqis ldorind
§ -4 03t S vayjsnley

125

Example 4

If possible, give an exampls of a true conditiona

sentence for which

2] The corverss is frus.

b} The corverss is false.

c) The contrapositive is true.

d) The contrapositive is false.

Example 5

Show that 2 conditional statemant is not
logically 2quivalent to its corverss.

Discrete Mathematics Page 30
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Only If

If ¢ and  ar= statement variables, P only if @

mezzns ‘i nat g then not 37 o, 2quivalently
by contrapesition) *if # then .

Biconditional Statements

If & and  ar= statement variables, the

biconditional of pand g is @ & g, read

“p if and only if §* and sometimes abbreviated
as “piffg”

P & is true if P and § have the same truth

value and false if P and § have opposite truth
valuss,

Biconditional Statements

e [ v Je—s
T [ "
A s

[ "
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Example 5

Use truth tables to show that
pesg=ivpvgla{egvp)

™

pey

-T

T
F

oo Ysim

DA &

-r
T

Order of Operations for Logical Operators
1. Evzluate negations first.
2. Evaluate A and v second. When both are
presant, parentheses may be nesded.
3. Evaluate — and & third. When both are
pressnt, parentheses may be nesded.

Example &

Detzrmine whather each of the followingis a
tautalogy. = contradiction, or neither.

3 ((pagl=p)=p
b palp e glacg

Necessary and Sufficient Conditions

Lett and & be statements,
¥ iz a sufficient condition for £ means ¥ — 5.
¥ is a necessary condition for § means VF - Vg

¥ is a necessary and sufficient condition for £
mesns ¥ 5

Clarifying Remarks

In logic, 3 hypothesic and conclusion are not
reguired to have related subject matters.

Simple example:
If Albert Pujols is a Baszball player, then
Brett Favre is a football player
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Simple exampla:
If Albert Pujols is a Baszball player, than
Brett Fawvre is a football player

Clarifying Remarks

In informal language, simple conditional
statements are often interpreted a5
biconditionals.

Simiple example:

If you 23t your dinner, you will get dessert.
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Valid and Invalid Arguments
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Section 2.3

Arguments

An argument is a seguence of statements, and

an argument form is 3 sequence of statement
forms.

All statements in an argument or angument
form, excapt for the final cne, are called

premises |or assumptions or hypothesas). The
final stat=ment is called the conclusion [typically

following “therefore™).

Arguments

An argument form is said to be valid i thers is

no possible way for the conclusion to be false
when all premises of the argument form are

true.

An argument is valid whenever its form is valid.

Discrete Mathematics Page 34



Testing an Argument Form for Validity

1. Identify the premises and conclusion of the

argument form.

2. Construct @ truth @ble showing the truth
values of all premises.

3. |dentify all rows of the truth taibde inowhich all
premises are true. Thess rows are called

critical rows.
4. Detzrmine the truth value of the conclusion
for all critical rows.

Testing an Argument Form for Validity

5. Ifthere is a critical row in which the
conclusion is false, the argument form is
invalid. If the condusion in every critical row
is true, than the argument form is walid.

<
S

R
<
-

¥
e

o vali

Example 1

_¢

E.‘
A g AT

[ A A©

Use 3 truth table to tast the argument for

waliity. q Ve
r

|

P
=g

~Ngwr

N AR
L aqa - AT ‘s

“"“1‘\"\'“‘\-“-}\
RERIE I ¥ W

———
I\

P —

P
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Example 2

Wse a truth table fo test the argument for
validity.

pvy
PR
p=T
= F

Y
R
RY

[~

Syllogisms

A syllogism is an angument form consisting of
two premises and a conclusion.

The first premise is called the major premise.

The second pramise is called the minor premise.

O TR AR

La
N nalaa 9

—

<« Al |AwA

Famous Syllogisms

Flocdus Ponens Miodus Tollens
i then g. I#p then g.
r -q
“q =R
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Example 3

Recall that an argument is valid whenever its
form is valid. |s the following argument valid?

I smaoking is healthy, then my physician will tell

me to srmoe.

Smoking is healthy.

Therefore, my physician will t=ll me to smoke.

Example 4

Use modues ponens or modus tollans to fill in the
blank in the following argument sa that it
becomes a valid inference.

If logic is easy. then you would not need this
class.

You need this class.
Therafors,

Rules of Inference

A rule of inference is 2 form of argument thatis

valid.

Examples:

Maodus Ponens

KModus Tollans
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Generalization

The following argument forms are walid.

P q
spvg ~pvg

Specialization

The following argument forms are valid.

paq pag
-8 ~q

Elimination

The following argument forms are valid.

pvg pvy
g p
£ !]l S q
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Transitivity

The following argument form is walid.
=g

g=r
P

Proof by Division into Cases

The following argument form is walid.
vV

=T
g=Tr

e

Fallacies

A fallacy is an &rror in reazoning that results in

an invalid argument.

Commeon fallacies:

= Using ambigucus premiszs

= Circular reasoning [assuming what you're

trying to prowe)

= Jumping to 3 condusian

= Conwerse Error

= Inverze Errar
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Converse Error
The following argument form is not valid.
p—q

T
]

Imverse Error
The following argument form is ngf valid.
r=gq
~
sy

Example 5

Detarmine whatherthe angument is valid,
exhibits the conwerse =rror, or exhibits the
inverss error.

If Julas soheed this probdem correctly. then Jules

obtained the answer 2.
Jules obtained the answer 2.

= Jules sohved this problem correctly.
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Example 6

Detzrmine whether the asgument is valid,
exhibits the converse arron, or exhibits the

inverss error.

If I play too many games, | won't finish my

homewaork.

If 1 don't finish my homewark, | won't do well on

the exam tomorrow.

= I | play too many games, | won't do well on
the exam tomorrow.

Example 7

Detarmine whether the angument is valid,
exhibits the converse =rror, or exhibits the
inverse ermor.

If this number is larger than 2, then its square is

larger than 4.

This number is not larger than 2.
= The square of this number is not largar than 4.

Sound Arguments

An argument is called sound iff itis valid and all

its premises are true. &n angument that is not

sound is clled unsound.

Remember that validity is a praperty of an

ansument form.

We can only be sure that the conclusion of an
argument is trus when we know the angument is

sound.
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Example 3 [revisited)

The following argument is valid. Is it sound?

I smoking is healthy, then my physician will tell
me to smoke,

Smoking is healthy.

Thearefore, my physician will t2ll me to smoke.

Contradiction Rule

If you can show that the suppasition that

statemient P is falsz lzads logically to a
contradiction, then you can conclude that pis

true.

~ p-—',L

Example 8

Show that the contradiction rule is valid by
showing the following argument form is valid.

o
e
Y

~# — ¢ where Cis 3 contradiction.
=B
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Predicates

A predicats is a sentence which contains a finit=
number of variables and becomes a statement
when specific valuss are substituted far the
variables.

The domain of @ predicate variable is the set of
all valuwes that may be substituted in place of the
variable.

Predicates
FPi{x)isa predicate and X has domain D, the
truth s=t of F{%) is the set of all slements of I

that make P{x}trus when they are substituted
for X.

The truth set of P(x) is d=noted
[x = D|P(x1]
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Example 1

Let B (%) b= the predicate "—10 = x < 10"
Find the trth sat of B(%) for mach of the
fiollowing domains.

a) E
by I
c) The set of all even int=gers.

+

Quantifiers

Quantifiers are waords that refer to quantiti=s
swch as “some” or “all” and indicate for how
many =lements 3 given predicate is true.

Quantifiers provide one way to obtain
statements from predicates.

The Universal Quantifier
¥ is the universal quantifi=r

v is typically read as “for all.”

Other typical readings:

“for mvery,” “for each,” “for amy” “given any®
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Universal Statements

Let (x) be a predicate and [ the domain of X.

A universal statement is 3 statement of the form
wx € D,Q(x)

Itis defined to be true if and anly if @Lx) is true

fior each individual x € 0.

A value ¥ for which -!J-jr‘_- is false is called 2
counterexample to the universal statement.

Example 2

Which of the following are equivalent ways of

expressing the statement
wi € L, if ¥ is even then 1 is even.

a] Allintegers have even squares and are even. *-

<.

b} Given any integer whose sguare is sven, that

integer is itself even.

c) Forall integers, thers are some whose sqguare

is mweEn.

Example 2

Which of the following are equivalent ways of

expressing the statement
wi € L, if n? is even then 11 is sven.

d) Any int=ger with an =ven sguare is even.

e} If the square of an integer is even, then that

inteEer is sven.

f} All ewen integers hawe =ven sguares.

X &<+
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Example 3

Find a counterexample to show that the

statement

vey e R XH5 = VE+T
is false.

The Existential Quantifier

Jis theepy befin guantifiar

3 is typically read as “there exists”

Other typical readings:

“there is 2, “we= can find 2," “for some”
“there is at l=ast one,” “for at l=ast ona®

Existential Statements

Let  (x) be a predicate and [ the domain of 1.

An =xistential statement is a statement of the
form

3x € I such that Jix)

Itis d=fined to be true if and anly if @(x} is true

for atleast one x € 0.
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Example 4

Which of the following are equivalent ways of

expressing the statement

3x & R suchthatx® =2

3] The sgquare of each real numberis 2.
b} Some real numbers hawve square 2.

c) The number X has square= Z, for some real
number I.

Q-.%

Example 4

Which of the following are equivalent ways of

expressing the statement
3x € K such thatx* =2

d) I§ % is @ real number, then x° = 2,
e} Some real number has sguare 2.

f} Thare is at least one real number whose
square is 2.

&

Formal vs. Informal Language
There is often more than one way we can
informally state a formal stat=ment.

Formally, we want universal and =xistential
gquantifizrs at the beginning of 2 sentence.
Informally, we often place them at the end.
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Example 5

Rewrite =zch statemnent so that the quantifisr
trzils the rest of the sentence.

a] Forany isosceles triangle T, two angles of T
are equal.

b} Thare exists a continuous function f such
that f is not differentiable.

Universal Conditional Statements

One particularly important statement form is
the universal conditional statement

3%, if P(x) then Qx)

Example &

Rewrite the stat=mant
Some questions are sasy
in the following two forms:
i} 3 M:'f;ucn that ‘/t"'}MN
2} 3 such that RieYind Fisensy
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Example 7

Rewrite the stat=mant

Every computer science student needs to take
data structures

in the fiollowing two forms:
1) wx, FO% then ikt dabr snch

I w s k‘.‘f_“"hﬂ. M&lﬁt’:"ﬁ’"ﬁ:ﬁcm

mplicit Quantification

Often, the universality or sxistentiality of a
statement is implied, not explicitly written.

Example B

Rewrite the stat=ment as either an explicity
exist=rtial or explicitly universal statement.

. 5
ringleg T; He yom of fle conls L T 120

a] The sum of the angles of a triangle is 180°. Fer ll
b} The number 12 is divisible by at least twio

primes.
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= and «=

Let F(x) and {x) be predicates and suppos=
the comman domain of % is .

The notation P{x) = (%) means that avery
mlemient in the truth set of P{X) is in the truth

set of Q%) or, equivalertly, wx, P(x] = Q{x).

The notation P{x) = J(x) means that P(x)
and Q%) have identical truth s=ts, ar,
equivalemtly v, Pix) = Q[I]
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Section 3.2

MNegation of a Universal Statement

The negation of a statemant of the form
wx e I,Q(x)

is logiczlly equivalent to & statement of the form
3% € I such that ~J(x].

Megation of an Existential Statement

The negation of a statement of the form
3x € I such that {(x)

is logiczlly equivalent to & statement of the form
wx e D~Qix)
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Example 1

Writ= formal and informal negations of the

following statements.

al 3 a movie M such that 12 is over & hours
long.

b} &N real numbers are positive, negative, or
zzra.

MNegation of a Universal Conditiona

The negation of a statement of the form
wx, if P(x) then Qx)

is logiczlly equivalent to & statement of the form
3% such that P(x)} and ~3(x).

Example 2

Writ= @ formal and an informal negation for the
following statement.

v € L, if flis prime then 1 is odd ar 1 = 2.
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Example 3

Determine whether the propossd negation is
correct. If it is not, write 3 conrect negation.

Statement: For every integer 1, if 1% is aven

then 11 is aven.

Propossd negation: For every integer 3, if 57 is
even than N is not even.

Wacuous Truth of Universal Statements

In generad, & statement of the farm
wx € D, if P(x) then Q(x)

is called wacuouwsly true [or tree by default) iff
Pix) is false for every X in I\,

“In General”

In ardinary languags, the words “in general®
me=an that something is usually, but not always,

the case.

In mathematics, the words “in general” mean
that something is ahways true.
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Section 3.3

Statements with Multiple Quantifiers

When 3 stat=ment contains mare than one kind
of quantifier, we imagine the actions suggested
by the quantifiers as being performed in the
order in which the quantifi=rs occur

Statements with Multiple Quantifiers
Far & stat=ment of the form
vx € O, 3y € E such that x and y setisty Flx, ¥)
ta betrue, yau mrust be able to meet this |:'1:II=n5=:

1. Imagjre that somecne is allowed to draose any
element from O and Eive it bo you. Callit 2.

2. How thatyou have x, your :'.:Ieﬂge's?n‘in: an
element ¥ £ £ 30 that the chosen x and found y

together satisfy the praperty Fix, ).

Note that you do nat heve to safect i until after ¥ is
chasen, & n:m"q; joute P'clc = different y for each x.
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Statements with Multiple Quantifiers

Far s stat=ment of the form

3x E O sach thak ¥y € E, rard_‘.‘:-e?isl‘:.'.“[r_ ¥

ta be true, you must be able ta must fing cne sinEI:
element (ol it x) in O which mests the fallowing
E'l!|t"|5&l

1. Afteryou have sel=cted ¥, someane is allowed to
thoose amy slement whetsoever from E snd give it

ta you. Callit y.
2. Without changineg your x, you must show thet the

thasen y and pre-gelected ¥ together satishy the
property Pz, yi-

Megation with Multiple Quantifiers

The ne==ption of

vx £ 0,3y € £ such that x and y setisty P(x, ¥)

is
3r £ O such that ¥y € E, x and ¥ satisfy —F{x, ¥)

The ne=zation of

3r E [ such that ¥y € E, rard_‘.‘:-e?i:l‘:.'."[r_ ¥
is

¥r € 0,3y £ E such that x and y sutisf‘f —Pix,¥)

Example 4

Rewrite the stat=ment in English as simply as

possibbe, and writ= @ negation for the statement.

Ju e Rsuchthatwr e R, uv = ¢
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Example 5

Rewrite the stat=mant formally using quantifiers
and wariables. Than, write 3 negation for the

statemient.

There is a program that gives the correct answer
to every question which is posed to it

Changing the Crder of Quantifiers

In a statement containing bath v and 3,

changing the order of the quantifiers can
significantly change the meaning of the

statement.

|f ane quantifier immediately follows another of

the sam= type |Le. both are ¥ or both are 3),
then the order does not affect the meaning,.

Example &

Writ= @ new statement by changing the order of
the guantifiers. Identify which statement is

true: the original statement, the version with
imterchanged quantifiers, neither, or both.

vi € B3y e Ksuchthatx < ¥.

Then, rewrite the statement in English.

Discrete Mathematics Page 56



Arguments with Quantified Statements

Friday, September 9, 2022 1:58 PM

(i
CS1200+Lec
ture+8+H...

Universal Instantiation

|f @ property is trse of averything in a set, then it
is true of any partcular thing in the s=t.

Recall: Famous Arguments

Mlocus Formens kdadus Tollens
if 7 theen g. I then g.
r -9
g =
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Universal Modus Ponens

Farmal versian: Infarmal wersion:

W it Fix]) then Qix).
FP(z) tors particulara o rakEg P true,

I x ke Flx ) tros,
then x meies Q(x] true.

= mrakes 3] true.

Example 1

Use universal madus ponens o fill in 2 valid
conclusion for the argument.

If an integer 1 equals 2k and K is an integer,
then 11 is even.

0 =guals 2 - 0 and 0 is an integer

Universal Modus Ponens in a Proof

Goal: Prove that the sum of any two =ven
integers is even.

Background definition:
An int=per is even iff it =guals twio= some

integer.
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Universal Modus Ponens in a Proof

1. Suppose #1 and 7 are particular but

arbitrarily chosen even int=gers.

Z. Then, 1 = Ir for some integer ¥ and 8 = Ig
far some integer 5.

3. Hence,
m+n=2Ir+ls

=2ir+zg)
4. Since {r + ) is an integer, 2(F + £) is sven.

5. Thus, #1 4+ 1 is =ven.

Universal Modus Ponens in a Proof

Where did we use Universal Modus Ponens?

Step 2:

If an integer is even, then it eguals twice some

integer.

1M is & particular even integer.

= 1M egquals twice some integer, say 7.

[ Simnilar angument with 1 and 5

Universal Modus Ponens in a Proof

Where did we use Universal Maodus Ponens?

St=p d:

Forall 1 and &, if & and ¥ are integers, then

i + # is an integer.
¥ and £ are two particular integsrs.

=¥ + isan integer
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Universal Modus Ponens in a Proof

Where did we use Universal Madus Pan=ns?

WWe also used it on step 3, and we usedita
second time on ste=p 4.

Universal Modus Tollens
Farmal wersian: Infarmal werian:
Y it Pix]) them Q{x). ¥ x mskes Flx) trus,
then x makes Q(x) true.

—{a) for= particulara a dioes not meke JFx]
true.
s =Flx] = @ doss net make Pl
frue.
Example 2

Use universal madus tollens to fill in @ valid
conclusion for the argument.

All irrstional numbers are real numbers.

1,
gisnota real number.
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Recall: Valid and Sound Arguments

An argpument form is said to be valid if thers is
no possible way for the conclusion to be false
when all premises of the argument form are
true.

An argument is called valid iff its form is valid.

An argument is called sound iff its form is walid
and its premises are true.

Example 3

Indicate whether the argument is valid ar
irvalid. Support your answer by drawing a
dizgram.

Mo college cafeteria food is good.
Mo poad food is wasted.
= Mo college cfeteria food is wasted.

Goo®

Example 4

Indicate whether the argument is valid aor
irvalid. Support your answer by drawing a
dizgram.

Mo vegetarians =3t meat.
All vegans are vegetarian.

= Mo vegans eat meat.

ﬁu:)uﬂ)
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Corverse Error (quantified form)

Farmal versian: Infarmal wergion:

v it Plx]) them Qix). ¥ x msies Flx) trus,

then x makes Q(x] true.

[{a) for m partiouler o ks (¥ true.

+ Pla) = mrakes Bx) true.

Mote that the comoerse erTor has an irvelid conduesion.

Inverse Error (guantified form)

Farmal wersian: Infarmal wersion:

W if F(x) then Q{x). H = makes Pi = true,
then x mekas Oz} tree

—Fia}foras purt'-:ulur a g choes not make Fx) true,

a =a) - 4 coes not make Jx] true

Mote that the inverse esmor has an irlid conduesion.

rdvuh‘

Example 5

Determine whether the argument is valid ar

iralid.

Lovene

|f @ praph has no edges, then it has a vertes of
degree zero.

This graph has at least one= =dge.

= This graph does not have 3 vert=x of degree
DEro.
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Example & V“:‘

Determine whether the argument is valid ar

invalid.

For every student %, if ¥ studies disorete math,

then ¥ is good at logic.

Suzan studies disorete mathematics.

= Susan is good at logic.

Tava l:1

Example 7

Determine whether the argument is valid ar

invalid. Lanvlw

All cheaters sit in the back row.

Morty sits in the back row.

= Monty is a cheater.

Example B

Determine whether the argument is valid ar

invalid. ww»

All students whao failed Prof. Simpson's class are

in @ fraternity.

Phillip is in a fratemity.

= Phillip failed Prof. Simpson's class.
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Converse Errors in Real Life
Suppose Abigzil belisves the follawing:

For mvery &, if & has Covid-19. ¥ has a fever,

cough, and shortness of breath.
Then, Abigail sits next to Steve in class, and

Steve is coughing and breathing heavily.

AhiEail decides Steve must have Covid-19.

Corverse Errors in Real Life

Suppose Dr. Smith knows the following:

For mvery X, if ¥ has Covid-19. ¥ has a fever,

cough, and shortness of breath.
Then, a patient comes to Dr. Smith's office with

a fever, cough, and is breathing heavily.
Dr. Smith suspects the patient has Covid-19 and

then performs appropriate testing.

This form of reasoning is sometimes called
abduction.
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Why Is Proof Important?

Writing @ proof forces us to become aware of
weaknesses in our anguments and in the

unconscious assumptions we have made.

In @ proof, we must say exactly what we mean
and mean =xactly what we say!

Are We Doing Insanely Hard Proofs?

Mol

Most proofs we do will assume you are familiar
with the basic laws of alg=bra.
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Even and Odd Integers

An int=gar 1t is even iff # = 2k for some

imteger k.

An int=ger 1t is odd i 0 = 2k + 1 for some

imteger k.

Example 1
Prove that —403 is add.

Prime and Composite Integers

An int=g=r 1t > 1 is prime i for all positive
integers ¥ and &, if 1 = 18 then either ¥ = 1 and
S=Rort=fands =1

An integer ft > 1 is composite iff there exist
positive integers 1 and £ such that 1 = 15 and

ler<nandl <z <n
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Proving Existential Statements
A stat=ment of the form
3x € D such that Jix)
istrue ifF[;'I:I'I is true for at least one X in D,

Constructive proof method #1:
Find an ¥ in ) that makes Q(x) true.

Perfect Squares

An int=ger # is called a perfect square iff 1 = kF
for some integer k.

Example 2

Prove that thers is & perfect sguare that can be
written a5 the sum of two other perfect squares.
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Proving Existential Statements

A stat=ment of the form

3x € D such that Jix)

istrue ifF[;'I:I'I is true for at least one X in D,

Constructive proof method #2:

Give a sat of directions for how to find an x in D

that makes J(x) true.

Example 3

Prowe that thers are distinct integers #1 and 1

such that = + Zisan integer
m o=

Proving Existertial Statements

A state=rment of the form

3x € I such that J(x)

is true iff ] (x) is true for at least one X in D

Monconstructive proof method 71:
Show that the existence of @ value X that makes

@(x) true is guararteed by an axiom or
previously proven theorem.
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Proving Existential Statements

A stat=ment of the form

3x € D such that Jix)

istrue ifF[;'I:I'I is true for at least one X in D,

Monconstructive proof method #2:

Show that the assumption that no swch value of

X =xists leads logically to a comtradiction.

Disproving Universal Statements

To disprove a statement of the form

wx € D, if P(x) then Q(x)

find a valu= of ¥ & I for which .F':A'_'I is true and
Qix) is false. Such an X is called 2

count=rexample.

Example 4

Disprowe the statement by finding =

counterexample.

For all int=gers M and 1, if Im 4+ % is odd then

M and 11 are both odd.
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Proving Universal Statements

To prowve 3 statement of the form

wix £ D, if F(x) then §(x)
it may be possible to check the stat=ment for

every possible slement X, This will only work
when =ither IV iz a finite [and relatively small)

set or when only a finite {and relatively small)
number of elements satisfy P{x).

Example 5

Prove the statarment.

For each integer o with 1 = n = 10,

n? —n + 11 s a prime number.

Generalizing from the Generic Particular

To show that every element of 2 set satisfies 2

certain property, suppose X is & particular but
arbitrarily chosen element of the set and show

that ¥ satisfies the property.

This is the basis for the method of direct proof.

Discrete Mathematics Page 70



M A

The Method of Direct Proof

1. Expressthe statement to be proved in the

form

wx € D, if P(x) then @x)
1. 5tart the proof by supposing X is a particular

but arbitrarily chosen element of B for which
the hypothesis Pix) is trus.

3. Show that the conclusion () is tru= by
using definitions, previously =stablished

results, and the rules of logical inference.

Example &

Prove the fallowing theorem.

The sum of any two odd integers is even.

Existential Instantiation

If the existence of a certain kind of ohject is

assumed or has been deduced, then it can be
green @ name provided that name is not

currently being used to refer to something =lse
in the same discussion.
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Example 7

Prove the fallowing theorem.

Whenewer 1 is an odd integer, En? + 7 iz myen.

Discrete Mathematics Page 72



Direct Proof and Counterexample |l

Wednesday, September 14, 2022 1:59 PM

™
CS1200+Lec
ture+10+...

Section 4.2

Directicns for Writing Proofs

of Universal Statements

-

. Copy the sEtement of the thecnem to be proves on
your papes

*  TEiz maksyThe Georem aletzment svaile@is Tor

referenes o ampoee remding Uhe precl.

r

. Clearly mari the bazinning of your proot with the

word Proof
Thls word angaraias ganwal Shcum bn atas the theons from k

nchnd proot

w

Mz your proof s #-contained
v Euplwin B memning of sach varinkle i your pros? withis
thc by of the pracf.

P

Wirite paur proat in ourr:l:be;,_!;rummu:icull,‘c:rr::t

sEntences
*  TRia doca nol prowent pou from wing aymbola auch my
wnd @ within s=mizneew

*  Thiadoca ol prevent pou from usng shorffand
nitbrevialions such i witkin ssrie=ces
*  Pven cowaliaipn eed couslioes should be incerporaicd

it asmiz=ey
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Diirections for W
of Un
Keep your reader informed sbout the status of each
statement in your proat
*  Mukc aurc il @ ol io the resdor whcthor samething in
the proafl ke slrcedy Bozn catablabcd, o soumed, ora
atill to be deduced.
Giwe B reason for each sssartion in your proaf
*  Every macrlion abould come dirccth from e hypot!
iz Dhmozm Emeg proved, fel e fram the d2fi
=rm, be » resull obisincd cardicr inThe proall or Be s
mathcmatical rewstt that hea previowly beon catabliahed.
=man ahould be choarky alatcd.

iting Proofs
3l Startements

T apecificr:

=

Directicns for Writing Proofs

Lniw Statements

Incluge “ittle words 8nd phrases” that masie the
I:si:o"\‘our :rsulre'nxclul

*  =tarli s=nlznez wilh boczuse or aiver and greng the
remann immecfisicly iy 3omcTimes p bie Do starling
acrileres with sz, Then, thu, Aoncr, o therofors and
alating the reeaan af (e crdl of B azel
If @ azriiznes oomrzazsa w now [Roughler fecl thal Soo
ot felbew wa we immsinls mzrmmnmnes of @ presdieg
alafcment, abocrve thal, recol that, o sole thal
ight Bz sl

Directions for Writi
of Uniw
Dispiay equations and inequ
* Watpkally prefar placing scuatians and recualifer 3= mpaie
[T —
Mizie the end of the proof clear to the resdsr
* Tadorat QED

Latl mekrmdadzr for gass et SemanaEaT, AT
rebich e £ B GTTCEITTEING

e [l
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Variations Among Proofs

Itis zxceadingly rare for two proofs of an
identical statement to be identical when writtan

by two diffzrent people.

This does not mean one of them is wrong,.

This also does not mean both of them are right.

Example 1

Prove the statzment. Use only the definitions of
the terms. Do not use any previouwsky

established properties of even/odd integers in
your praaf.

The differsnce of any sven integer minwes any

odd integer is odd.

Commaon Mistakes

1. Arguing from examgles
= Just because something is true in one case or o
hardhul of cases doss not mean it is true in

general.

2. Using the same lettar to mean two different
things

= Faremamgle, if you went to work with tao
istinct odd integers m and r, they shouldr't
botn zqual Tk + 1. W they do, they're not

distinct.
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Common Mistakes

3. Jumping to & conclusion

* Do not sllege that something is true without
giving an adequate resson.

4. Assuming what is to be proved

= Thiz is somatimes sultle, but it very bad.
5. Confusion betwesn whatic known and what

is still to be shown
* Ifyou want to state - in achvance —what er

P'Dofuirrs 1o shiow, write “We aim to show_" or
sometnirs likom that. Then, actually show it!

Comman Mistakes

E. Usz of any when the comrect word is some

* These words &re orcasionaily — but not slweys—
interchansesole.

7. Misuse of the word if

= We pften use if instesd of becouse. This is bad.

Example 2

Find the mistake|s) in the “proo™ of the statement.

Statzment: The sum of any two evenintegers

equals 4% for some integer k.

“Proof™: Supposs 1 and 1 are any two even
integers. By the definition of even, m = 2k for

some integer X and 7 = 1K for some integer K. By
substitution, M+ 1= 2k + 3k = 4k This is what
was to be shown.
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Example 2 {continued)

Is the statement truz ar false?

Statement: The sum of any two sven intezers
equals 4% for some integer .

Prowing an Existential Statement is False

To prove an existential statement is false, you
must prove its negation [which is a universal
statement) is true.

Example 3

Prove that the staterment is fals=.

Staterment: There swists an integer £ = 4 such
that 2k* — 5k + 2 is prime.

Let kK be on ontee whoe K24

fhen , LK - SK+Z Z(2EALKk-2D by fectorng

M= Tt onl n k-2 angs both n ‘}'%’/J
ant el K28 pethe Mo n =

‘ﬂwane, z K- S\MLW""‘,/“'M"'-"'S
e o t—o fudn other Fhan gae -

81 \e bt T —Sk+) 5 3 Ceontke
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M s oy . Jatestr, N s aad /'—-P'/J(/.

Example 4

Dietzrmine whather the statement is trus ar ZK
-
false. lustify your answer with 2 proof or M

countzrexample.

tyr So—e r'fL/Lg(r /¢

The product of any even inte=ger and any integer

iz mven. M*'n = CZk)/) b 1 jl)b) /,‘!()-/-’lu7
A Ck/l) bq ‘IJJ’gg‘af—'U-'/’y ol "70/})‘//,‘:_:‘/3’1

s Mo Prductol dus inbgor [sa, gn intge , gAMby~

nu_e,f’uﬁe N> o V71 yacey )
Vo

Example 5

Diet=rmine whether the statement is trues or

false. lustify your answer with a proof or Z ¢ > & [_I_-, DL
counterexample.
2.5 044

Forallint=gers @, b, and ¢, f . b, and ¢ ar=
consacutive, then & + b 4 i aven

Example &

N Lot 1)la+ 28G9

Diet=rmine whether the statement is trues or

false. lustify your answer with a proof or
countsraxample. ) (’nq"f /]5 (‘/}'L‘r j-n + ‘)

Any product of four consecutive integersis onz

less than a perfect square. 2 >
e /\H"'Sq?-}éﬂ 0+ $a% Lo

g

N

At i hatt il e ga
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Direct Proof and Counterexample Il

Monday, September 19, 2022 2:04 PM

T
CS1200+Lec
ture+12+...

100 4 -4 = aaq

qa L7 a9

Section 4.3 . ‘.]_;_}

. A an
o G727 47 44 .17
- ¢z . uT47

| oo o0 1\—*: (S ybat?

q1aq gz §L 464 1.7

Rational Numbers

A real number 1 is rational iff it can be expressed
a3 the quotient of twa integers with a nonzera

denaminator.

A rezl number that is nat rational iz callad
irrational.

Example 1

Dmtermine whather each number is rational. If

55, write it &5 the ratio af two integers.
g -2

b) 12345

c) 0454545 ..
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The Zero Product Property

The praduct of two rzal numbers is zero iff at
least one of the real numbers is zero.

Example 2

|f 1 @nd 1 are integers and neither M nor i

zero, is

m+n
mn

a rationad numbar?

Example 3

Prove that svery int=gar is 3 rational number.
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Theorem

Every integer is a rational number.

Example 4

Frove that the sum of two rational numbers is

rational.

Theorem

The sum of any two rational numbers is rational.
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Example 5

When expressions of the form (X —r)(x — 5}
are multiplied out, 3 quadratic polynomial is

ebtained. What can be said about the
coefficiants of the palynomizl obtzined in =ach

of these scenarios:

i. Both ¥ and 2 are odd

ii. Both ¥ and £ are even

iii. Oneis even and the other is add

Example 5 (continued)

Usz the resuits of this cxample to explain why

xT —1253x 4 255

cannot be writt=n 35 3 product of the form
(x —ri(x —g)
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IV Divisibility

Monday, September 26, 2022 1:59 PM

(N
CS1200+Lec
ture+13+...

Section 4.4

I¥1 and d are integers, then #1 is divisible by d iff
1 equals d times some integer and 4 = 0.

Instead of saying 1 is divisible by d, we can say

+ sz multiple of d

= disafactarof 0
= d iz a divisar of

» d divides

Divisibility

The natation d| is read “d divides 1.

Symbalically,

dnifFak € Tsuch thatn = dk andd = 0.

The natation d § 7 is read “d does not divide 2.
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Bxample 1

Dioes 12 divide 607 Justify your answer.

Theorem

Forallintegers 4 and b, if @ and b are positive
and g divides b, theng = b.

Corollary

Forall int=gers @ and positive integers b, i

@ divides B, then |a| = b

Bxample 2

Prove that the only divisors of 1 are 1 and —1.

Bxample 3

Prove that divisibility is transitive.

That is, prove that if a| b and b|c then gle.

Bxample 4

Disprove the follawing statement:

Forall integars @ and b, if a|b and b then
a=5

The Unique Factorization of Integers

Given any integer f2 > 1, there exist a positive

irmteger k, distinct prime numbers p.
positive integers 8, ..., ), swch that

and any ather expressian for 11 as @ product of
primes is identical to this except possibly for the

order in which the factors are written.

In standard factared form, the primes are
written in ascanding arder.
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Bxample 5

Write the integer 24348 in standard factored
form.

Bxample & Z 4&"’8

Determine whether the statement is trus or
false. Prowe (if trus) or give 2 counterexample (i

false).
2lze) 7 247y
Tha sum of any three consecutive integers is
divisible by 3.
2 6137
FaS

) 20T A

3 pad 7 5 (V)

Section 4.5 3 T 21\

A bzlZm 45 1|

76 =12 g xr

The Quotient-Remainder Theorem /\

Given any integer 1 and positive integer d, there

exist unique integers § and ¥ such that 7 —} u 3

n=dg+rand0 Sy <d

=l

g is sometimes called  div d. /\

T is sometimes called 1 mod d. 7 2/ 6]
/1 l1[,1)=l1,q/+“

I617

Bxample 7 ~
. . 2 I
For =ach of the following values of 1 and d, find
imtegers g and + such that 1 = dg +  and
3] n=67.d=4 7 711
by n=—67.d=4 /\
7 b
110§
Bxample 8
Evaluate the expression. 5 H 4]
B0 mod 7 /\
D47
N

> 49

27
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Suppose 4 is any integer. Famad 7 = 4, what

iz 5o mad 72

Bxample 8

Discrete Mathematics Page 86



Division into Cases

Wednesday, September 28, 2022 2:02 PM

&
CS1200+Lec
ture+14+...

Absolute Value

Far any real number X, the absolute valus of X,
denated |x]. is defined as follaws:

_fx ifxzD

¥ = |—x ifxr<D

Lemma 1

Far avery real number ¥, —|r| =+ = |r].
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Lemma 2

Far =very real number t, |—¥| = |r]|.

The Triangle Ineguality

For all real numbers X and . [¥ + ¥| = Ix| + [¥].

Example 1

Prove the Triangle Ineguality.

Example 2

Prove the following statement.

The fourth power of any integer has the form
8m ar Bm + 1 for some int=ger m.
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Proof by Contradiction
1. Suppose the stat=ment to be proved is false.
That is, suppose the negation of the
statement is true.
2. Show that this suppasition leads logiczally to a
contradiction.
3. Conclude that the statement to be proved is

true.

Example 3

Prove the stat=ment.

Far any integer 1, 1% — 2 is not divisible by 4.

Cose V. n “sedd

=7 k4l o Some afoerk
Assvmp T B puistoly byd
A'L’Zf Y, (Cy/}aﬁ.z, ;’I)L‘.SV('

AL (21D =22 kT ear-T

SR I R ) e

£ 4 &~

Proof by Contraposition
1. Express the statement to be proved in the
farm
wk in D, if P{x) then J(x).
. Rewritz the stat=ment in the contrapositive
farm
wx in D, if ~Q(x) then ~Plx).
. Prove the contrapositive by a direct proof.

[

L

Cornbalretn, hos Al 5ne) diwsbhle by

Ca,c/'b‘. N e
3
ne 'Lk L,/SML }n’ls(‘/h
A;g,,ﬂ.{, at- 1 2 Wi Jong by -

pt sl - At g
by cowmdiv B,
_EA' Yivisin by Cogps ]
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Example 4

Prove the stat=ment

Far ewery integer 11, if 717 is odd then 1 is odd.

The Relationship between

Contradiction and Contraposition
To prove

wx in D, if (%) then Q(x)

by contradiction instead of contraposition, you
Can suppose

3x in in ' such that Fix} and ~@(x)
and arrive at the contradiction that both F{x)

and ~Plx]_
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Indirect Argument

Monday, October 3, 2022 1:59 PM

(i
CS1200+Lec
ture+15+...

Two Famous Theorems

This section looks at two famous theorems.

WWe will state both theorems, plus 3 proposition
necessary to prove the second.

We will work through the proof of ons of the
two thearems in detail.

First Famous Theorem

w1 isirrational.
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Proposition

For any int=ger & and prime numb=r o, if pla

thenp t @ + 1)

Second Famous Theorem

The set of prime numbers is infinits.

Example 1

Frove the First Famous Theorem or, alternatehy,

prove the proposition and the S=cond Famous
Theorem.
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Section 4.10

Application: Algorithms

Algorithms

An algarithm is a step-hy-step method for
perfarming some action.

Variables
When working with high-level programming
languages, 3 variable can be wsed to refer to a

location in a computer’s memary and/or the
contents of that location.

The data type of 2 variable indicates the set
from which the variable takes its values.
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Variables

An assignmant statement gives 2 value to a

variable. It has the form
Y=v

where X is 2 variable and € is an expression.

Such a statement is read X is assigned the value

& or " is defined to equal 8

Iterative Processes and Trace Tables

The walues of the variable{s) involved in an

iterative process (loog) within an algorithm
should be tracked carsfulby.

This can be don= using a trace table.

Example 2

Find the values of @ and f after exscution of the

following loop by first making a trace table.

g=21f=10
fork=1to3

g:=g-K

f=stf

mext X
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Formal Descriptions of Algorithms

Yivhen formally describing an algorithm, we generally

include the foll owing information:
L The name of the algorithem

2 A brief description of how the: al gorithm warks.
3. Theinput variable names, labeled by data type.

4. The stat=me=nis that make wup the body of the:
algorithm, possibly with sxplanatory commeests.

5. The cutput varizhle names, labeled by data type.

The Division Algorithm

Input:  a {m nornegstive intamar] snd

d :u Fosi‘t"\.-z iﬂ'bes_\er]
Algarithm bosdy:

¥im g, g i 0
whiler & d

Fomr—d

q=gel

end while
|After the loop, a = dg +r.]

Output: g, r[n:nn!saﬁu: irrha5ers:|

Example 3

Mak= & trace table to trace the sction of the

division algorithm for the input variables
e=26andd =7
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Algorithms and Sequences

Monday, October 3, 2022 1:59 PM

B
CS1200+Lec
ture+16+...

nma
# @ and b are integers that are not both zero
and i g and ¥ are any imt=gers such that

o= b

pediab) = gedid,r

1
The Eudlidean Algorithm
Goal: Find god (4, ) farinegers 4 > B 2 0.
Procedure:
1f5 = 0. then ged(4,8) = 4.
1F8 = . then dhide A by B using the diisian
igorithm, sotmining 3 quotisnt g and remainder
Fouchthat A= Bg 1.
Then, nate that ged(d, B) = ged (B, ).
Repeat the process until 7 = 0.
ir|o I 1 3
i +,
Example 1 A e} %37 nal s |DQ)3 $7ZC1J) 7
Use the Euclidean Algorithm m
= grestest comman diiaar of sseh pair Z 17
g e et et v I 32 T Y g @z 17LD+)
aq
294 and 60 WIAPISINY)
| R !
832 and 10933
: I 5
! |
GLY 2107 )}Lv
Relatively Prime b ! - _ 0, td4? s ad§0, 290)
Twe intagars are said 1o be relativaly prime i 172e [Trre = %0‘ (,\'}19. 780} = %M) (’730/ £v0) = QJ‘ Ea 3 !
their greatest comman divisor is 1. :_I')/“’ 2
' ! ]
v e = s g gAv K@ o 5@
190 Jiyee 542 52 0
799 o4 ¢
suo o_\:) (40,0) :@
2
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Sequen

& sesuence i1.3 function whass Sermain s sither al

tha irtagers Ewtvean [ard incuding) two gvn
reegers o 3 The intagers greseer than of eqed B0

2 given raeger

Abtwrrately, 3 sequence it an ordered list of
surrbers of the farm

v Bt Bt B

Each indivi ot 8y ofthe

sezuence

Explicitly Defined Sequences

Some |but mos 3 efi g
an it formuls for the & term of the sequence.

The formla.

_ i
%= (All

Sefines the seqaemor

12 34
TITTYE

5
-z

Example 2

Consier the ssquance
25

g 11
EEE

2] Find the next tws terms in the sequence.
b} Write an expression for the K™ term of the.

sequence.

Example 3

Consider the sequence
39

Eay

5
l,i-g‘Z.Fr

3] Find the next twa tarms in the sequence.
b) Write an axpression for the kKt term of the

sequence.

Factorials

=123 m-1)n
o W—

e

Special Case:

0=

Note that factorials are only defined for
nonnegative integers.
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Example 4

Simplify sach of the following factorial
expressions.

4

&

{2n + 1

-0l

Example 5

Consider the sequence
1 ¥ oy
5T

&) Find the next ta terms in the seque

k] Wirite an exgrassion for the 1 tarm of the
sequence where 1t begins at 1

€] Wirite an exprassion for the k¥ tarm of the
sequance where & baging 2t 0.

Summation Notation

When sdcing up the valioes of & ssquence, v can use

summation notation t concisely express the sum.

1tm and n are inke; n e .y,
ere rexl numbers (o reelvsluss expression:

IS T T ———
&

& s czlied the incex af summstion.

4 Is calle the Iower limit of the summation.
called the upper limit of the summstion,

Bxample &

Evaluate each summation.

Product Notation

Wihen musipiying the values of a sequence, we can uie
FFOGUCE notation tn cancisely sApress the proguct,

11 300 1 ae IRERTE, M %, 800 G,
= res rumzers (or reskaluss sxpressicns), tren

| (R

& s czlied the inces
w0 is callec the Iower limit

i e the uzper it

Example 7

Compure the following product

I
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Properties of Sums and Products
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Proving Formulas
Monday, October 10, 2022 2:01 PM

T
CS1200+Lec
ture+18+...

Section 5.2

The Principle of Mathematical Induction

Let F(n) ba 3 proparty that is defined for
integers 1 and let @ b= 2 fixed integer. Suppose

the fallowing twe statements are true:

1. Pila)is true

Z. Foreveryinteger & = g, if P(R) is true then
Plit+ 1)istrue.

Then the statement

For every integer #t = &, P[0}

istrue.

Proof by Induction

Te prove a statement of the form

For svery integer #t = &, P[0}

perfarm the following two steps:
1. [Basis St=p) Show that F{&) is tree.

2. [Inductive Steg) Shaw that for every integer
iz a, i FE) istrue then PO 4 1) is true.
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Proof

Induction

To perform the inductive step, first suppose that

Pt} is tree, where K is any particular but
arbitrarily chosen integer with & = &

« This supposition is called the inductive
kypothasis.

Then, show that Pk + 1) is true.

Example 1

Use induction to prove

o o nln+1(2n +1)
2.E= 3

for all positive integers 1.

Clased Form

If 3 sum or product with a variable number of

terms is shown to be equal to an expression
which do#s not contain an sllipsis, summation

niotation, or product notation, we say that the
sum is written in dosed form.
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Basic Summations

.
ZC -CR
- nn+1)
Y-
z

i

4

Basic Summations

=

ZI,_mnH-lzn—l'
&

=

Use a basic summation formula to evaluate sach
of the following sums.

Example 2

5410+15 4204 - + 300

e

TH

(> 0{,\:

1k kot & (,l“x)k

5 htrr

brr Sempg mfF A 272

|
| ¢ (k! # éUﬂ{(
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Z (JesdC ) tks)
Ly ky t e by’
) #(ka) kg ket
Yk )y

[}

n

\\)

nl
Y\br =z /—f)!

i [n
or
[

N
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Geometric Sequences

Wednesday, October 12, 2022 2:02 PM

T
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Geometric Sequences

A grometric sequence is 3 sequence whers sach
term is obtained from the preceding aone by

multiplying by = constant factor:

If the first t=rm is 1 and the constant factor is ¥,
the sequence is

.-
1rr e

Sum of a Geometric Sequence

For any real number 7 = 1 and any integer 0 2 0,
n

L_reiet

=

=0
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09 in Discrete Mathematics

In discrete mathamatics, we typically define
=1

we aften say 07 is indetesminate.

Elszwhers in mathematics (including caleulus),

Example 1

Find 2 closed form expression for the sum
3L+ B4 4 gk
where k = 3is an integer.

Section 5.3
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Prove the stst=ment by induction.

5™ — 1 iz divisible by 4 for every integern = 0.

Dase case

n:o -

Example 2

Il
)]

S°A 120 D dstiy b9

.j’“ S I 9] Jf“.‘sl-é(e_

by

flm :'n%bszp

Some- fri‘ooer r.

(W)

RET | -
I\uu S /\ uq/

fer 50 mera lg" -

c kel | 2 ;K;,(

£(Hrf[\s"‘

;ZO("' ; =
- lurth

= g, <)

Seel iJona ;n l—al/; (o ”,‘f .
Th ’”’{, =y

u${ £ i [ 4,
By Mbvars S dusible by T8

E 3 LeY n=5$ gzczf—a‘bﬂyz v
XaMmpe
Prove the statement by induction. W,
. _ . s K <D X for  ia 1'!\5'/ k={
n® < 2% for everyinteger 1 = 5. boal:
Shor, (k) e 2 et
l k_elil-’ k"'.l—ZkH
2" ¢ (n+1)! fr 220
{"{u(: 0
Qase e [0*13.1 2 1e v
:L‘.. ZKL 0(4-2.)! fb/)'nr-b :-\hspr k20
ok, Shew XML (Kaie2)!
Zlﬂ‘l= Zk7-

L (_kk'l)! 7 by B4
(ka 23] Lktd]  Siae k+3=z3

ka2 4 dard
Yuos, by Ja Jo o= 7 LLM?‘).’ for 220
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Recursion

Friday, October 14, 2022 2:03 PM

&
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Sections 5.6 and 5.7

Recursively Defined Sequences

A recurrence relation for 3 sequence
Gge Byr Bgr o0 5 @ formula that relates sach term

@y, to ane or more of its predecessars. The
initial conditions for such a relation specfy the

specific values of G5 (and, if necessary, the naxt
few values as well).

-
-
Example 1 (.[ i ,
Pa LA
Find the first four terms of 2ach segquence. G T L M'1 z
) (A ° I\ - =2
a] Gy = 28—y + K for every integer k = 2 ‘I'
a, =1 [ 1 B AV S 7
B Y (<

b}tk = Klig-a — Bk-z for every integar £ = 3

h=1lu;=1
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(2|
Example 2
-
A single pair of rabbits {male and female] is born at r-' Z l
the b=ginming of & y=ar. Assume the following ~ ‘ l .1
conditians: f,‘.’ Z]xl=
1. Rabit pairs are not fertile during the first manth _ Z + I - ;
-
of life but thereafier give birth to one nes r:" d
male/female pair at the =nd of =very month. - s
Z. Mo rabbits die. f‘i =
Haow many rabkits will there be 2t the end of the A g
yeart I')
cz 13

The Fibonacd Sequence

Example 3

The Towers of Hanoi puzzle consists of disks with
hioles in their centars, pilad in order of

decreasing sizz on ane pole in & row of three,
The gpoal is to move all the disks one by one from

one pode to another, never placing a larger disk
on top of & smallzr one, and =nding with the
entire pile on a different pole.

How many mowes would be required to maove a

pile of 7 disks?
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Example 4

Use induction to prove the formula you found in
Exampls 3.

TH

Shov

o fnf'gl/kz\
l‘m"l z Z Al

Usia . recorsve def.

ll:(e\ < ZL{P'

B2 AT CI U Ph 4

=1 'M"L"\

A
byindoe Py, he2-t 8

Arithmetic Sequences
A sequence dy, Oy, Oy, 00 i called an arithmetic
sequence iff there is a constant d such that
By = gy +d
for each integer E=1.

&n explicit formula for such 3 sequence is
By = g + dn
for every integer n = 00

Geometric Sequences
A sequence Gp, Oy, G40 00 is called 3 grometric
sequence iff there is 3 constant ¥ such that
Qg = Flp—
for each integer £ = 1.

An =xplicit formula for such a sequence is
g8, = g™
for every integer i = 0.
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s
Example 5 ( 1
Use it=ration to find an explicit formula for the B—- = 1= -)-
SEqQUEMNCE. =+ l_;
£ 1

b= Bet eor mach integark = 1 \1,' _)/ -

PR 7 T “
By=1 \* 3
Then, werify the correctness of the formula using N 1
induction. b < -'/'

n~_\+0n
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Set Theory

Friday, October 21, 2022 2:02 PM
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Section 6.1

Sets

If 5 is a set and Plx) is a property that elements

of § may ar may not satisfy, then a s=t A may be
definad by writing

A= |xe5Pix)

which is read as “A is the set of all X in 5 such
that Fix)is true”

Subsets

We can formally define a subset as follows:

AcB=vwrifxcAthenx e B.

The negation is

Ag B = 3xrsuchthatx s dandx € B.
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Proper Subsets

A iz called a proper subs=t of B [denoted 4 C E)

iff
1} AcE. and

2} there is at lzast one element in B which is

not in A

Equality of Sets

Given sets A and 8, 4 equals B |written A = B}

iff every element of 4 is in B and every element

of B isin A.

Iymbolically,

A=B=AcBandB c A.

Proving Subsets

Let s=tx ¥ and ¥ be given. Toprowe X C ¥,

1} suppose that ¥ is a particular but arbitrarily

chos=n slemant of £, and than

2} show that ¥ is an element of ¥
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Example 1

Let s=tx B and £ be defined as follows:

B = [y = I|y = 10b — 3 for some integer b}

£ =z e Z|z = 10¢ + 7 for some integer ¢}

Prove or disprove each of the following

statemients.

al BFcC

by CcB
o) B=C

Universal Set

A universal set is the set containing all objects or

elements and of which all other s=ts are subsets.

Commion examplss:

R
Z

R® [the s=t of all two-dimensional real vectors)

Operations on 5ets

Let 4 and B be subsets of a universal set I

The union of 4 and B, denoted A U B, is the set
of all elements that are in at least one of 4 and

B.

AuB=fxellrsdorxeB]
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Operations on 5ets

Let 4 and B be subsets of 2 universal set I

The intersaction of 4 and B, dencted A0 B, is
the set of all lements that are commen to both

Aand B.

AnB=f{xsellrsdand x = B}

Operations on 5ets

Let 4 and B be subsets of a universal set I

The differance of B minus 4 [or the relative
complemert of A in B}, denoted B — A, is the

set of all elements that are in B but not A.

B-A=|xell|xe Bandx 4}

Operations on 5ets

Let 4 and B be subsets of a universal set I

The comglement of 4, denct=d A5, is the s=tof
all elements in I that are notin 4.

A ={xelllxed}
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Interval Notation

Siven real numbers @ < b,

(@ b)=f{reRle <x<h}
(gh]=freRla <x=h}

[ob)=lreRla £x < b}
lmbkl={xeRla=x=<h)

The syrbals 20 and —20 sre wsed to indicate
intervals that are unbounded on either the right

or the [=ft.

Example 2

Let the wniversal set be R, and b=t
A=jxeR0<x =1}
B={xeRl=x<=4)

C={xreR3=Zx<9}

Find =ach of the fallowing.
Aul €04

inB  g,tl
Auc (023 v £2,4)

And

Example 2

Let the universal set be R, and b=z

A={xreR0<x =1}
F=lxeRll=x<4)

C={xeR3=Zx<9}

Find =ach of the fallowing.

-4 (1, W)

~’

o ('ool 0] U(Lo‘
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Operations on Indexed Collections of Sets

Eiven sebs g, A4, A7, . that are subseis of & uniserss

set [F and given @ nannesative IMERET &=,

n
U..u-l.tEi.l':c £ 4y for at baast ong Imegar 0= ¢ = n)
=]

U;i, =[x & If|x € A, for st Jeast ane mmteger § 2 0]

Operations on Indexed Collections of Sets

Given sebs g, 44, Az, . thet sre sobsess of 5 unjserss|

set [F and given @ nannesative IMERET &=,

=

r].-l. =[x & F|x £ 4 for avery integer 0 < [ < m!
=D

=
n:l. = {x € Ux € & for every Integer ( 2 0}
i=0

Example 3
L=t .'.:', = [ =21, 2] for each nannegEtive in ri.

Find mach of the following quantities.

|:L;|n‘ = [:—‘5,‘1]

0 503
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The Empty Set

The =mpty s=t |ar null set] @ is the unique set

containing no elements.

Disjoint Sets
Two s=is are disjoint iff they have no elements in
COMMan.
Symbeolically,

A and B are disjpint = Anf =@

Mutually Disjoint Sets

Sets ..-1.,.:1-__..3.2_- o @re mutually disjoint [or

pairwise disjoint or nonoverlapping] iff o two
sets A; and A; with distinct subscripts have any

elements in comman.
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Partition of a 5et
A finite or irfinite collection of nonempty sets
{Ag Ay Az} is & partition of & sex A i
1} A isthe union of all the 4;, and

2} the sets Ap, Ay, Az o0 are mutually disjoint.

Example 4

Consider the s=t A = [a. b, c.d. & f. gl
Which of the following is a partition of A7

lmeelibdfliegl] £ ¢ A
[ie.5Licdl el D Ao &

{{CI-{':.-”?. d.ghis fil ‘l

Power Sets
Siven a set A, the peoEr set of A, denotad
Flr). isthe s=tof all subsets of 4.
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Let A = [1,2,3,4])
Find P(a).

Example 5

{{1}1,{2},3},{4},{1,2},{1,3},{1,4},{2,3},....}
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Properties of Sets

Monday, October 24, 2022 2:00 PM
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Procedural Versions of Set Definitions

Let X and ¥ be subsets of 3 universal set I and
suppose X and ¥ are elements of I,

1) xeXufifyrelorxel.
I xeXnFifyxeXandxel.

I xel-YVifredandr ¥,

1) xeX-iFfxrel
) (xyylefxFiFyeXNandyel.

Subset Relations and Order of Operations

The aperations of unian, intersection, and

diffzrence take precedence gwer set inclusion
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Some Subset Relations

For all sets 4 and B,
AnBcAanddAnBcE

Far all sets A and B,
AcAuBandBc AuB.

Forallsets 4, B, and C,
fAcBandBcCthand L.

Example 1

Prove the following statement:

Forallsets 4, B, and L.
fAcBandBc Cthand .

Lt A ¢ and fEC

(of 2L A

sace ALl yih

s:ng BEC r el

Sace  pef, Acl m

Set |dentities
Let all s=ts referenced below be subsetsofa
universal set IF.
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Set [dentities

Let all s=ts referenced below be subsetsofa
universal set .

Commiutative Laws:
Forall sets 4 and B,
AuB=Fu4d
and
AnB=8n4d

Set |dentities

Let all s=tx referenced below be subsetsofa
universal set I

Associative Laws:
Forall sets A, B, and £,
[AuBluC=Auw(Bul)
and
AnBlnC=An(Bnl)

Set |dentities
Let all s=ts referenced below be subsetsofa
universal set IF.

Distributive Laws:
Forallsets 4, B, and C,
AuvBnCl=(AuBin{dul]
and
An(Bull=iAnBiu{dn)
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Pl Led 4 B.L be sphs Poove. AU 2yl ADa (4,¢
Prove the distributive lw Lot « € A J /UAL) w [ C )
TR | T e [ A0B), (vt

Cax 1. *EA
T8 4eA, Doy L EAUD ant % eAu

—éﬁv‘—LéAbd]—Ml—ﬁ—eAucl 1.&@00)/) ﬁl/‘)

(e o L6 Bal

Example 2

Hre Val, iy v&Panl £eL
e FEB, FEAVS

Since e, 1ef.(

Set ldentities 4"‘7’7@@7’7#(:40()
Let all s=tx referenced below be subsetsofa
universal set I HM‘(’ 0 bp% :::SO‘)’, AbéOn CJ _c__ (AVD) 1 (AVL)
Id=ritity Laws: ; o >
For swery set A, PP fl’ P‘ (7] (.A V D)A“UL’) 9 A\/(-Uﬂ (v.)
and
AnlU=4 ..

Set [dentities

Let all s=ts referenced below be subsetsofa
universal set IF.

Complemeant Laws:

Far mvery set 4,

Discrete Mathematics Page 123



Set [dentities

Let all s=ts referenced below be subsetsofa
universal set .

Dowbie Complement Law:

Far mvery set 4,

(A% =4

Set |dentities

Let all s=tx referenced below be subsetsofa
universal set I

|dempotent Laws:
For mvery s=t 4,

Aud=A4A
and

AndA=4

Set |dentities
Let all s=ts referenced below be subsetsofa
universal set IF.

Universal Bound Laws:
Far mvery set 4,

Aull=D
and

Angz=g
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Set [dentities

Let all s=ts referenced below be subsetsofa
universal set .

D= Maorzan's Laws:
Forall sets 4 and B,
(AuBy¥=A"nB*
and
(AnByYr=4A%uB*"

Set |dentities

Let all s=tx referenced below be subsetsofa
universal set I

Abszorption Laws:
For all sets 4 and B,
AuldAnEBE)=4
and
AnfduB)=4

Set |dentities
Let all s=ts referenced below be subsetsofa
universal set IF.

Complaments of I and @
==
and
¢ =0
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Set [dentities

Let all s=ts referenced below be subsetsofa
universal set .

Set Difference Law:

Forall sets 4 and B,
A-B=AnBE"

Theorem
Forary sets A and B, if 4 C B, than
i) AnB=4 and
2) AuB=E.

Example 3

Prove the following theorem:

If E iz @ set with no elements and 4 is any s=,
then £ C A

&W‘ 7% st S

febis,  E 5B » el
Sevh hat ££4

Thon Ylr. 3 an glonnfp IE

hh el a4

Sag € corialns  so edprr?s
Ths s o ponte dicdo,

s €24 @
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Example 4

Prove the following theorem:
There is only one set with no elements

_A{iwvl(/ f‘\/‘ J';/:n ¢}‘ )”'/Q 5,/61_
Po b by ar le~oh
b'v n’b 'P‘ﬁ<c¢$"3 Jz"w’""‘,
E, ¢ by aal P, Gﬁl
e e £-E, @

Proving a 5et is Empty

To prove that a set is empty, suppose the s=t has
an zl=meant and derive 3 contradiction.

Example 5

Prove the following theorem:

Forall sets A and B, if A  Bthend n B° = @

Libet An D

Ny 1o A an) £60°
bree, $EA ] $ 40
Hove, A C [

U o o cogdaluten,

le5, Aa 8= 0
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Functions
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Section7.1

Functions {more formally)

A function _f fram a set X to @ set ¥, denotad

F:X = ¥.is a relation from X {the domain of f)
to ¥ (the codomain of ) which satisfies two

properties:

1} Ewery element in X is related to soms=

element in I, and

2} Mo element in 1 is related to more than on=

elementin ¥

Functions {more formally)

The unique element to which f sends an

element X in X is called f(x) and can be
refarred to in words as:

= fofx
= The output of f for the input X

= The value of fatx

* The image of ¥ under |
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Functions {more formally)
The set of all values of [ is called the rang= of f

or the image of X under f.

Symbolicalky,

range of f = {¥ € ¥y = fix) for some x = X}

Functions {more formally)

Given an element ¥ in ¥, thare may exist

element in I with ¥ as their image. When X is
an element such that f{x) = ¥, then ¥ is called

a preimage of ¥ or an inverse image of ¥. The
set of all inverse images of ¥ is called the inverse

image= of ¥

Symbolically,

inverse image of ¥y = {x e X[f(x) = ¥}

Equality of Functions

1§F-X = ¥ and 5: X = ¥ are functions, then

F=GiffFlx) = 0lx) forevery x € X
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The Identity Function

Given a set X, define 2 function Iy from ¥ w0 X
[=31]

Ipix)=x

foreach x = X.

Iy s called the identity function on X

Example 1
fa m ~ 0
Recall that FIA) danotes the set of all subsets =
of 4. o
Define o function F: P{{a, b,c}) = Tmon==2 55 ‘ \x (
follows: 7z
F{X) = the number of elements in ¥ C
Draw an arrow diagram for F.
a,d
=~
QL >
he
oL >3

Example 2

Let x = {0,1,2,3.4} and define a function

F:Jg ¥ Ju = Jg % Jg as follows:

For =zch (@, B) € .Ir: XJI':_,

(e, ) = ((26 + 1) mod 5,(3b — ) mod 5)

Find the following. ((_Z £3)+( )ﬂaJS, (3 L4)-2) a0d f) =k 0)
&34
G(L0)

yal

(203 1m0 35, (300y-2hpds )= (3 3)

TLrmd S = 3mdS
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Logarithms

Let b be a positive real number with b = 1. Far

each positive real number X, the logarithm with

basze b of ¥ is the sxponent to which b must be
raised o obtain X.

Symbolicalky,
logpr=y=b=x

The logarithmic function with base b is the

function from B* to R that takes each positive
real number X to 10Eg .

Example 3

Find =ach of the following valu=s.

g 16 L

1 )
ez TR

19gs 47
ghoxsm (V\
Example 4

Let §_ be the set of all strings of I's and 1'% of

lemgth . The Hamming distance function
H: 5, ® 5, = L™ iz defined as follows:

For each pair of strings (5, t) € 5, % 5.

H{g, t) = the number of positions in which £
and T have different values.

Find H{00101,01110).
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Boolean Functions

&n fi-place Boolean function f is 2 function
whose domain is the set of all ordered n-tuples
of ['s and 1's and whose co-domain is the s=t

{0.1}.

More formalhy, the domain is the Cartesizn
product of 0 copies of (0,1}, denoted [0,1]".

Example 5

Consider the thre=-place Boolean function f
defined by the following rule:

For =ach triple {%,, ¥;, ¥3) of s and 1's,
Flzpag k) = (4 + 3%, + 2x; ) mod 2

Find f{1,1,1) and f{0,0,1}.

(4 ¢3¢ ) Amod 27 |

([71. 0+ z}’"l 2 -0

Functions Acting on Sets

fFf: ¥ s ¥isafunctionand A c ¥ and L C ¥,

then
flA)=|ye¥|ly=Ffix)forsomex = A}

and
FHC =[x e XIfix)ec)

FlA) is called the image of A.
FH ) is called the inverse image of C.
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Example &
Let X = (@ b,c)and ¥ = [r, 5t 0, v, W]
Define - X = ¥ as follows:
flab=wflbl=wficl=1
1} Draw an arrow diagram for f.
2} Letd = {4, B]. € = [£], D = {x, 7], and
E = {r.z]. Find f{A) FIX) FHE,
FHD, F~4E), and FHF).

FLA=E év;

$ £+ f{—,vo}
(0= 26
D= Ea b3
e P
(O = el
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Inverse Functions
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Section 7.2

Recall: Functions {maore formally)

A function _f from a set X toa set ¥, denot=d
f-X = Y. i= a relation from X |the domain of f

to ¥ {the codomain of ) which satisfies two
properties:

1} Ewery elementin X is related to soms=

element in I, and

2} Mo element in X is ralated to more than on=

sl=ment in ¥

One-to-One Functions

Let f= X = ¥ be a function.

[ is one-to-one (or injective} iff for all slaments

¥, and Xz in X,
if %) = flxz) then ¥, = %

or, equivalenthy,
ifx, # Xy then flay) = fixg)
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Example 1

Diefine functions F:.5 = ¥ and G- X = ¥ by the
arrow diagrams balow.

Is F one-to-ona? N 0 s !

Is § one-to-one? A/ 0

One-to-One Functions on Infinite Sets
To prove a function f is one-to-one, use direct
proof as follows:

Suppose X, and I; are elements of X such that
Flag) = fixh
Show that Xy = X5

One-te-0One Functions on Infinite Sets

To prove a function f is not one-to-one, we
typically find slaments ¥, and X in X such that
Flag) = izl butxy = x5,
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Example 2

Define g: I=Z by the rule gl:f::l =8n+ 3 for

each integer %, %G\'{} = g b“ )

Is § one-toone? Prowve or give 3

counterexample. '-p‘ P 5"“
Y%

{

(%]

W’“ﬂb

L

Example 3
Define H: R = Kby the rule Hix) = x¥ for

Z
each real number . \4 L- Z ) z (:2) =5

|s H ane-tc-one? Prowe or give a

counterexample. N {,
9 - -
o~} ~oae

Onto Functions

Let =X —= ¥ bea function.

f is onta |or surjective] iff given any =lament
yin ¥, itis possible to find an slement x in X
with the property that ¥ = f{x).

f is not onto iff there exists an element ¥ in ¥
for which it is not possible to find an =lement
% in X with the property that ¥ = flx].
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Example 1 {continued)
Diefine functions F:.5 = ¥ and G- X = ¥ by the

arrow diagrams balow.

Is F anta? \(‘,7 .l . '. !

Is f onta? N )

Onto Functions on Infinite Sets

To prove a function f is one-to-one, generalize

from the generic particular:

Suppose ¥ is any element of ¥

Show that there is an element ¥ in X with

flxl =19

Onto Functions on Infinite Sets

To prove a function f is not onto, we typically

find an =lement ¥ of I swch that ¥ = flx] for
any X in X.
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Example 2 {continued)

Define g: I=Z by the rule gl:f::l =8n+ 3 for
each integer i,

Is § onto? Prowe or give a counterexample.

QA Cal = 34+ 2

JR)

WEN YRS,

7Z%A

oL
b et pato

E
NN

Example 3 {continued)

Define H: R = Kby the rule Hix) = x¥ for
each real number X.

Is H anto? Prove or give @ counterexampls.

Exponential Function w

The axponential function with base b is the
function from R to B* defined as

BXpg X = BT
for all real numbars X, whers
=1
and
1
=%
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Laws of Exponents

If = and b are hoth positive snd  snd y sre both resl,
then

(E*1F -a™

(k) = a*B™

Properties of Logarithms

For positve real numbers b= 1, %, and ¥ and

for every rezl number a, we have

logg x¥ = logy ¥ + logp ¥

l:}gb; =logg & — l0gg ¥

loggx® = alogyx

Change of Base Formula

Farany positive bases @ = land b = 1,

logx
log.x = —
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Example 4

Evaluate log, 7 using a calculator.

One-to-One Correspondences

A one-to-one correspondence (or bijection)
from @ set X to @ s=t ¥ is 2 function X = F
that is both one-to-one and onto.

Example 2 {continued)
Define g: L = Ibythe rule gin) = 8n + 3 for
each integer f.

Is § = one-to-one correspondence ¥
No.no ¥ oon-b cone
e " o “' ]
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Inverse Functions

Suppose f:.5 = V is both one-to-one and onto
[i.=. @ one-to-one correspondence). Then, thers
exists @ function [ ¥ = ¥ such that f 7y is
the unigue sl=ment X in  such that flx]) = .

Symbelically,
Flivh=x e flxl=y

gp:le 2 [continued)

Diefine g: F = Zbythe rule gian) = B0+ 3 for
each integer i,

Find its inverse function g~

Theorem
1Y and ¥ are sets and f: X = ¥ is one-to-one

and onto, then ¥ = X is also ane-to-one
and onto.
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Reflexivity, Symmetry, Transitivity
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Section B.2

Reflexivity, Symmetry,

Let B be a relation on 3 set 4.
R iz reflexive iff for every x £ A, x R x.

R is symmetric if for every 5, ¥ £ A,
ifx R ythen ¥R x.

B iz transitive i for svery 4, 7,5 € A,
ifxRyand yRzthenx A 5.

and Transitivity

Example 1

Let B be the “less than” relation. That is, for
mvery ordered pair (X, ¥} £ 4 % B,
rRysz<n

3] Is T reflexive?
b Is T symmetric?
) Is T transitve?

W, *LF

Vi

hy 344

afl yer

'(u' he o

el yLZ py g
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Example 2

Recall that the congrusnce madula 3 rlation, T,

is defined fram I to Z as fallows:
Far all integers m and 1,
mTn s 3(m—n)

3} 12 T reflesi
bj 1 T symme

€) Is T transitve?

Yes,  ffa-n)

Xes. Vooy peyod

q,-r=%;

v

'5|(,q,-f3
%) (=g,

p-g =3k
=

The Transitive Closure of a Relation
Let B be a relation on a set A. The transitive
closure of R is the relation £* an 4 which
satisfies the following thres properties:

R* is transitive.

RCR

3} IF 5 isany other transitive relation that
containz A, then RE C 5.

g/f/%HU(;
es5,

f) < }C_:)'(—k)

The Transitive Closure of a Relation
In ather words, the transitive closure of 2
relation is the smallest transitive relation that
contains the relation.
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Let T = [(0,2),41,0,02,3), (3.1} ] be 3 retation
defined on 4 = [0,1:2,3]). Find T*, the transitive
closure

of T.

Example 3

L O

05

%

‘ﬁ.LﬂJ ‘f’ﬂ “JJ
( AN
(0,
0.,
(_,}‘03/
k’),‘S\,
(0.0,
U/)I
(",
(e,
(z,0)
(z,2)
(3,2)
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Relations on Sets
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Binary Relations

A binary relation is @ subset of a Cart=sian
product of two sets.

Example 1 ] DT | . )
'I'hzmng;rmr'l:zmn-dl.ln&rzlatiur.,'r.is-deﬁnzdfrnrr. d !U - '/
Ltp I a= follovws: For all integers mand 1, -3

mTne 3im—n), ‘i
5 10T 17 1 110 =16y
11710+ <z

Is{221eT?
l2(B1} T2 _GZ_Z%_é_T'—%.._'Z_ /
! * —_—

b] List five integers isuchthatn T 1

Itcan be shown that m T niffmmod 3 = n mod 5 l . )é
Cd -
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Example 2

Let ¥ = {@. b, £} and recall that F(X) is the power

sot of ¥, Di=fine a relation § on PLE) as follows.
For all s=ts A and B in P(X).

A5 B = A has the same number of elements as B.

a) Is{m b} 5 {boek?
b} Is (@} S5 {a b} ?

The Imverse of a Relation

Let B be a relation from 4 to B. Defin= the

inverse relation B from B to A a5 follows:
R ={(y.x)e B = A|(x,¥) € B}

In athar words, forall ¥ £ 4 and ¥E B,

(vxleR =ixyiekl

Example 3

Letd = {3.4.5}=nd3 = {4.5.E'r='1d =t 7 b=

the “less than” relation. That is, for every
ordered pair [I.','] 4 =B,

-~

rRy=x<y

e-v)_?

State suplicitly which ordered pairs are in H and

-]

R

SRV R

L%
B S
Sl
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Relations on a Set

A& relation on a set A is a relation from A to 4.

The Directed Graph of a Relation

Far all paints ¥ and ¥ in A, thars is an arrow
from X to ¥ iff x B ¥ or, equivalently, (x,3) € B.

Bxample 4 7

Letd = {2.5.4.5_'5_.'-'_.5'-] and define 3 relation &

on A as follows: Forevery X, ¥ £ 4, % $
TRy=xy

Draw the directed graph of the relation. W

h
7))
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Example 5

Let 4 = {5,6,7,8,9,10] and define 3 relation 5
on A zs follows: For every X, ¥ E A
fy=llx—1

Draw the directed graph of the relation.

Unions and Intersections of Relations

Given tana relztions B and 5 from 4 o B,
Rul={xyled=xBlxy)eRorixy) 5]
RnS={ix,y) e d=B|(x,¥) € Rand {x,¥) € 5]

Example &
Letd = {2.4! and B = {E.E.:U:ll- and define

relations B and § from At B as follows: For
every (5, VIEA®E,
TRy =x|¥
and
xfy=y=4-1x
Starte =xplicitly which ordered pairs are in A=BE,
RS Ruf andRnE.

1 6

1%

T, T0

L!,‘D\l
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Example 7

Define relations B and 5 on B as follows:
R=[{x.y)eR=Rly=|x]]
S={z.¥y)eRx KRy =1}

Graph RERuS and B NS inthe Cartesian
plamn=.
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Equivalence Relations

Friday, November 11, 2022 2:03 PM

=
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Recall: Partition of a Set

& finits or infinite collection (A, Ay Az, 0§ 0f
nonempty subsets of @ s=x A is @ partition of 4
iff

1} A isthe union of all the 4;, and

2} the sets Ap, 4y, Az 0 are mutually disjoint.

The Relation Induced by a Partition
Given a partition of 2 sat A, the relation induced
by the partition, &, is defined on 4 as follows:
For svery X, ¥ € 4,

% By < there is 3 subset 4; of the partition
such that both X and ¥ are in 4;
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Example 1

The partition [{0} {1,341, (2]} induces a
relation & on {0,1,2,3.4]. Find the ordered pairs

in R.

Equivalence Relations

Let A beasetand R bearelationen d. Risan

equivalence relation iff B is reflexive, symmetric,
and transitive.

Example 2

Let A be the s=t of 3l 54T undergraduate
students, and l=t & be the relation defined on A
as follows:

For svery X, ¥ € 4,

% R ¥ & & has the same major as V.

Prowe that the relation is an equivalence

relation.
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Equivalence Classes

Suppose A isasetand B is an =gquivalence
relation on 4. For each element @ in 4, the

equivalence class of 0, denaoted [a] and
sometimes just called the class of 4, is the set of
all elements X in 4 such that X is relatad to g by

Symbolically,
la] = |x € A|x R o}

Example 2 (continued)
Let A be the s=t of il 5&T und=rgraduate

stedants, and lat £ ba the relation defined on 4
a5 follows:

For svery X, 7 € 4,

% B ¥ & ¥ has the same major as ¥.

Describe the distinct eguivalence classes of the

relation. [Assume “"undeclared” is a major)

Example 3
letd={ —4-3,-2,-10,1234}and

define an equivalence relation £ on 4 as
followes:

Forevery (m,n)} £ 4,

m R n e 4| (m® —a®)

Find the distinct squivalence dass=s of B.
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Representatives of Equivalence Classes

Suppose B is an =quivalence ralation on @ s=t A
and 5 is an equivalence class of B &

reprasentative of the class 5 is any =lement @
such that [g] = 5.

Lemma

Suppose A is a set, B is an eguivalance relation
ond,and @ and b are elaments of 4.

Ifa R b, then [a] = [B].

Another Lemma

Suppose A is a set, B is an eguivalence relation
ond,and @ and B are elements of A

Tharn, sithar

(6] n [B] =@

or
[a] = [B].
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The Partition Indu ence Relation

1§ A is a setand { is an eguivalence relation on

A, then the distinct equivalence classes of £

form a partition of A; that iz, the union of the
equivalence classes is all of A and the

intersaction of any two distinct classes is empty.

Congruence mod d

Let #1 and 1 be integers and |=t d be @ pasitive

integer. We say that ™M is congruent to 1
maodulo & and write

m=n(modd)
iff

d]{m —n)

Example 4

Determine which of the following congruence

relations are true and which are false.

mod 5)

I=-1(mod 4)
—11 = -5 imod 3}

4= 13 (med 2)
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Example 5

Let A be the s=t of 3l ordered pairs of integers
for which the second element of the pair is
nonzero; thatis, 4 = L x (2 - {0})
Define a refation B on 4 as follows:
Far all gairs (@ ) and (2,d)in 4,

(@, b) R (c,d) = ad = be.

3] Prowe that R is transitive.

Example 5

Let A be the s=t of 3l ordered pairs of integers
for which the sacond element of the pair is
monzero; tharis, A = T x (Z— {0}
Define a refation B on 4 as follows:
Far all gairs (@ ) and (g,d) in 4,

{e,b) R (c,d) = ad = be,

b} Describe the distinct eguivalence classes of B

Rational Mumbers

A5 we have [at b=ast partially] s=en in the
previous sxample, rational numbers can be
definad as squivalence dasses of orderad pairs
of integers.
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Probability

Monday, November 14, 2022 2:00 PM
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Section9.1

An Irtroduction to Probakbilit,

Random Processes

When we say that a process is rmndom;, it means
that when the process takes place, one gutcome

from some set of outcomes is surs fo occur, but
it is impossible to predict with certainty which

specific gutcome will pocwr.

Examples:

Flipping = coin

Rolling a di=

Sample Spaces and Events

A sample space is the s=t of zll possible
outcomes of a rmndom process or experiment.

An =vent is 3 subset of 2 sample space.
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Probability of Equally Likely Events

If 5 is a finit= sample space in which all

outcomes are equally likely and £ is an event in
3. then the probability of E, denoted F(E), is

BiE) number of outeomes in E
el = =
total number of outcomes i §

Number of Elements in a St

Faor any finit= set A, N{A) denotes the numb=r
of elements in 4.

Thus,

Standard Deck of Cards

A standard deck of cards contains 52 cards

divided into four suits. The red suits are
dizmionds and hearts. The black suits are dubs

and spades. Each suit contains 13 cards of the

following denominations:
Aface). 2,3, 4,5, 6,7, 8 9,10, ] [jack).

0 {quzen), K [king]

The cards |, O, and K ar= called face cards.
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Example 1

Consider 3 standard deck of cards and imagine
that the deck is so thoroughly shuffled that if

you select a card at random, each card is equally
likemhy to b= selected. Write mach event as a s=t
and compute its probability.

a] The event that the chosen card is red and not

a face card.

b} The event that the chosen card is black and

has an even number on it.

Example 2
Suppase that ench child bom i equally likety to be & boyor

a gl Considera family with exscty three children. Let
B85 indiczbe tha the first fwo chil dren born ane boys and

tive |exst child born s & gin.
1. Listthe eight elements in the sampie space whase

outcomes are all possible penders of the three children.
2. Wiite mach of these events as s set and find its

probatility

B The eveni that exactly one child is s girl.
b:| The eyent that ot least teo children are Ei'ls.

c] Theeventthat no child is & girl.

MNumber of Elements in a List

If M and A are integers and M = 1, then thers
aren—m+1 integers from M to # inclusive.
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Example 3

If the largest of 56 consecutive integers is 276,
what is the smallest?

EBxample 4
How many positive two-digit integers ars
multiples of 37
What is the probahility that = randomby chosen
positive two-digit integer is 2 multiple of 37

122 304

44= j[,JJS

/)

}3—'4*[: >0

70

Example 5

There are three dooes on the set for 8 game show —
let's call them 4, B, and C. H yau pick the cormect doar,
yau win the prize. ¥ou pick door A. The host of the
shaw theen opens ones of the otfer doors and reveals
thet there is pa prize behind it. Ee=ping the remaining
twao doors closed, he asks whether you want to switch
yaur chaioe to the other closed door or sty with your
original chiice of door A. What should you do if you
waint to mei mize your chance of winning the prize —
stey or switch® O, would the likelibood of winnirs =]
the same =ither way®

<~ AN
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Possibly Trees and Multiplication Rule

Wednesday, November 16, 2022 2:01 PM
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Example 1

In baszball's World Series, the first team to win

four games wins the series. Supposs Team & is / \ ;)
playing Team B. A

A
a] If Teamn A& wins the first two games. how A

many ways can the World Seri=s be ( “ 6
completed? (Draw atrae.)
b} How many ways can = World Series be played 7] Fd A
if Team & wins four games in 3 row? A AYA @
\e oAy’
D) v
J way)

The Multiplication Rule

If an operetion consists of & steps and

* the first step can be performed in m, ways

* the SECone sTEp can be parformed in my ways
|m=gardizss of how the first step was perfarmec|

» the itn shen can be parformed in myg ways
|regardiess of how the P'ec:ninE steps were performed|

then the entire operation can be perfarmed in
Mgty By

W
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Example 2

Hexadecimal numbers are made using the
sixteen haxadecimal digits

0123456789 4ECD0EF
Faor =xample, JA2D is a hexadecimal number.
How many hexadecimal numbers begin with one
of the digits 3 through E, end with ane of the
digits & through F. and are 5 digits leng?

JADYARYAINYAD;

405, sov

Example 3

How mamy in::EHs sre there fram 100 through 5537
How many infegers from 100 bo 555 have distinct
oigisr

\What is the probaility that a rancomiy chasen three-
digit imteger has cistinct digits?

How mamy odd integers are there from 100 through
BS5T

How many odd intzgers from 100 ta 285 heve gistinct
igitsT

Qad-lgp = 400 o,

Chore

a L10) 10> =dGo0

yav

A ad(B)= 649

avo

3010505) 4po sadH

Permutations
& permustation of 2 set of objects is an ordering
of the objects. For sxample, the set of slements

@. b, and £ has six permutations:
abe, ek, bae, bea, cab, cbe

Far any integer 1t = 1. the number of
permutations of a set with 1 elements is nl.

(53 1ot I F
L&) M:Ma.
/l { fr;f
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Example 4

Six people atiznd the thesine tagether and sit in 2 now
with enrtly six seats.

B} How many ways <an they be sesbed togetherin the
row?
b Suppase one of the sin is & doctar wha mest sit on

the sisie in mase she is paged. How many weys can
the pecpile be seated together in the raw with the
doctarin an sisie seat, assuming there is an sisie 2t
only one end of the row?

Repest part (o] assuming that there is an nisle ot
bedh ends of the row.

"

L)( ~-710

(2) (s

g

Example 4

Six people stiznd the thestre tagether and sit in 2 raw

with sssctly sixseats.

] Suppase the six pecple consist of three manied
couples and ench couple wants to sit together with
the oloer pariner on the left. How many ways can
the six be sented together in the row?

4 (23C1) 2§

r-permutations

An F-permutation of 3 s=t of 1 elements isan

ordered selection of ¥ elzments taken from the

setof i elements.

The number of ¥-permutations of 3 set of 1

elements is
Pin.r}=nln-1)n-

or. equivalenth.

n!

Pim,ry= ol
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Example 5

How many 3-permutations are there of a set of
8 objects?

%

l %—551

L g

¥ (70C6) 7 3%

Example &

Five pzople are to be seated around a circular
table. Two s=atings are considered the same if
oneis a rotation of the other. How many
different seatings are possible?

Example 7

In a six-cylinder engine, the sven-numbered
cylinders are on the left and the odd-numbearad
cylinders are on the right. A good firing order is
3 permutation of the numbers 1 to § in which
right and left sides are atzrnated. How many
possible paod firing orders are there which start
with @ left cylindes?

M

V|~

W
~d
N
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Addition Rule and Pigeonhole Principle

Monday, November 28, 2022 2:03 PM
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Section 9.3

The Addition Rule

Suppose 3 finite set A equals the union of &

distinct mutually disjoint subsets A3, Az, ., Ay,
Than,

NEAY = N(A,) + NiA) + - # Nid)

The Difference Rule

If A is a finite setand Bis a subsst of A, then

N(A - B) = N{4) - N(B)
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S3t 53063 € SILLI) ... £ 52(43Y 456D -3

Example 1

In Python, identifiers must start with ane of 32
Syl UpPET- OF [owes-Case [etters in the Roman _

HTFND:!: o-Par ungerscare. The initisl cherecter may = 77 f 152 % 007, %4 *
stand alone, ar it may be fallowed by Bny number of
seciticns] charscters fram & set of 63 symoals [the 33
aboie pis the ten digits]. Certsin keywards re szt
asice and may not be used — in one implementstion,
there 2= 31 such reserved ejwards, nane ot which
haz mars then eight charactars. How mamy Pjthan
identifiers are tnere tnat are jess than or equal to it
characters in length?

The Probability of the Complement

1# 5 is 3 finite sample space and 4 is an eventin
5, then
P(A<) = 1— P{A).

The Inclusion/Exclusion Rule

1§ 4, B, and £ are any finits sets, then
N(AUB) = N(A4) + N(B) - N4 n B)
and
NiAuBul)
=NiA) + N(B)+ N(L) - N(AnE)
—NANC)-N(EnC)+NAnEnC)
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EBxample 2

A giserete matn potassor passer out e form asking rhucents
0 check il the math anc Comp 50 courses they have taken. \ \ 7
Out o 2 total of 30 students in the Cass, she found the

* 3000k pracsic

* 18 took Caboulus|
* 25 took Fython b
* 5100k both precaic and Caic|

* 15 took ot precaic ang Pythan \0 %
* Btook both Caic | and Fython

* 47 took at least one of the tree courses

3
Bxample 2

&) How many students did not take any of the
three courses?

b} How many students tock all three courses?

€} How many students took precalc and Cale |
but not Pythan?

d How many students tock precalc but neither 'J

Calc | nor Pythan? N(/ pU Cu\[])
2P € NeLL)  N® - NLPal)
SNLpatd W CCaYE pepala?)

47 = 30 ¢1g 4 26-46-1{-8 +
NCPA ta¥)

Section 9.4

NLP" Ca ll’) = 6
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The Pigeonhole Prindple
A functian from ane finite 32t to 2 smaller finit=
sat cannot be ons-to-one. Thars must be 2t
Ieast two elements in the domain that have the
same image in the co-damain.

Bxample 3

& small town has only 500 residents. Must there
be 2 residents wha share the same birthday?
Why?

Yes

GoD 7 36k

Example 4
Assuming that all years have 365 days and all
birthdays e-ccur with equal probability, how
large must 1 be so that in any randomly chosen
group of i people the probability that twe or

1,
mare have the same birthday is at least ;?

Discrete Mathematics Page 167



Bxample 5

Given any set of four integers, must there be
two that have the sams remainder when divided
by 37 Why?

17 4 s vzl

bBxample 6

How many cards must you pick from a standard
deck of cards to be sure of getting 3t least one
red card?
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Trails, Paths, Circuits

Monday, December 5, 2022 2:02 PM
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Section 10.1

Trails, Paths, and Circuits

The Kinigsberg Bridge Problem

The town of Kanigsherg in Prussia was built ata

point where twao branches of the Pregsl River came
together. It consisted of an iskand and some land

alang the river banks connected with s=ven bridges
[as shown on the next slide). In 1736, Leonhard

Euler published & paper answering the following
question:

|5 it possible for 3 person to take @ walk around
town, starting and snding at the same lacation, and

crossing each of the seven bridges exactly onc=?

The Kinigsberg Bridge Problem
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The Kinigsberg Bridge Problem

|z it possible to find a route through the graph

that starts and ends at some vertex and
traverses sach edge exactly once?

Walks

Let & be = graph and let v and w be verticesin C.
A walk from 1 to w is o finite atterneting sequence of

ndjacent vertices and sdges of . Thus, 8 walk has the
form

By Uy ey =+ U By

where the u,'s represent vertioss, U = 7, 4, = W, and
the2;'s represent ecees. Further, note thet vi—s and o;

mre e endp-uints of gs.
The trivial wailk from v to v consists of the single vertex

E.

Trails

A trail from ¥ to W is & walk from ¥ to W that

does not contsin & repeated edge.
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Paths

& path from # to W is a trail that dozs not

contain a repeated vertea

Closed Walks

A dosed walk is a walk that starts and ends at

the sams vertex.

Circuits

A dircuit is & closed walk that contzins at least

one =dge and does not contain a repeated edge.
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Simple Circuits

& simple circuit is a circuit that do=s not have
any other repeated vertex except the first and
last

Summary of Definitions

Example 1

Using the praph abowve, detsrmine whether sach
walk is a trail, path, circuit, or simple circuit.

3] VS T E VR Ve Ealy rﬂ"
bl eozmssise welK

L3
o) VT Ty Vgl l; b:r cw
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Example 1

Using the graph above, detzrmine whether each
walk is a trail, path, circuit, or simple circuit.

) oV by Pybaly i:n"b s
B Ve TE T, o’ﬂh& wﬂ'“‘

Alon Yl

Subgraphs

& graph H is said to be a subgraph of a graph 7

iff every vertex in H is also 2 vertew in &, svery
edee in H is also an edge in §, and svery sdg= in

H has the same endpaoints as it has in §.

Example 2
List all subgraphs of the graph  with vertex s=t

{Ty, U5 | and edge set {8y, 65,84, whers the
endpaints of &, are 1y and ¥, the endpoints of

By are 1) and ¥, and 95 is a loop at ¥,
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Example 2

The 11 subgraphs of § are shown below.

Connectedness

Two vertices ¥ and ¥ of a graph 7 are

connected iff there is a walk from ¥ to W

& graph {7 is connectad iff given any two verticas
vand win § there is 3 walk from © to w.

Thus, 3 graph is connected i it is possible to

trarve| from any vertex to any other vertex along
a sequence of adjacent edges of the graph.

Example 3

|5 the following graph connected? ﬂ 0
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& Lemma about Connectedness

Let f ba = gragh.

If wertices ¥ and W are part of a drcuit in § and

one =dge is remowed from the circuit, then thers
still axists a trail fram ¥ to W in F.

1 & iz connacted and & contains 3 circuit, then
an =dge= of the circuit can be removed withowt

disconnacting (7.

Connected Components

& graph H is a connected componant of a graph

(7 i

i. H's.::ub;n:ﬂ of G;

ii. H iz connected; and

ii. noconnected subgraph of f has H asa
subpraph and contains vertices or adges

that are not in H.

In other words, a connected component is a
connected subgraph of largest possible size.

Example 3 {continued)

Find the numkber of connected components for

the following graph.
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Euler(ian) Circuits

Let f be 2 gragh. &n Euler jar Eularian) circuit

of (F is @ cincuit that contains svery vertex and

mvery edze of 7.

In athar words, an Euler circuit for § isa
sequence of adjacent vertices and edges in §

that has at |least one =dge, st@rts and =nds at the
same wertey, uses every vertex of G at l=ast

once, and uses svery edge of § exactly once.

Theorem

& graph 7 has an Euler circuit iff § is connected

and every vertex of § has positive sven degre=.

The Kinigsberg Bridge Problem
Is it possible o find & l‘ N

route through the graph Ag lu v
thet starts and ersds ot

some vertex and traverses

each edge sxacily ance?

i T
In otfeer wiords, doas the
graph have an Euler
oirouit? n"
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Example £ V-J éﬁs Jﬁl e §

Show that the graph below does not have an
Euler circuit.

abedot o b i'ft]c\alﬂl" o~
Example 5 J
\erify thet the graph has .
mn Euler crcuit. Then,
describe twa distinct Euler - - b
dirouits starting and "
ending st wertex a4
Euler Trails

Let & be @ gragh and l=t ¥ and W be two distinct
vertices of . An Euler trail from © to W is a
sequence of adjacent edg=s and wertices that
starts ot ¥, ends at W, passes through every

vertex of (7 at |=ast onice, and traverses syery
edge of (7 exactly onee.
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Theorem

Let f be 3 gragh and l=t ¥ and W be two distinct
vertices of 5. There is an Euler trsil from ¥ to W
iff [f is connect=d, ¥ and W hawe odd depree,
and all ather vertices of § have positive even
degree.

The Kinigsberg Bridge Problem

Dioas the eraph hisve Bn
Euler trail® s

. T

-

<

P

Hamiltonian Circuits
Given a gragh {7, a Hamiltonian cincuit far T is =
simple cirouit that includes every vertex of iF.

In athar words, a Hamiltonian circuit for 5 is a

sequence of adjacent vertices and distinct edges
in which every vertex of f appears exactly once
except for the first and kast, which are the same.
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Example

Find n Hamiltonian CEU Pn'f'/)

for the E"’F"M <

-_rruwl; n aA 5’!"”‘““’1 P/iblw

Vi

v

-

\/r. V'Z ‘7:\ V'; Vq

Vo

Hamiltonian Circuits
If & graph F has a Hamiltonian circuit, then 7
has a subgraph H with the following properties:
i. H contains every vertex of G
ii. Hisconnected
ii. H hasthe same number of =dges and
warticas

iv. Every vertax of H has degree Z.

Example 7

Show thet the gaph
arnot hawe &
Hemiltonian cirosit.
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Handshake Theorem and Trees

Wednesday, December 7, 2022 1:59 PM

(i
CS1200+Lec
ture+32+...

Sections 4.9 and 10.4

Total Degree of a Graph

The totzl degree of a graph is the sum of the
degrees of all the vertices of the gragh.

[ié.f‘)-td‘: o

Example 1

Find the degree of each vertex of the graph
shown below. Then, find the total degree of the

graph. v
v

4
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The Handshake Theorem

If  is any graph, then the sum of the degre=s of
all of the vertices of f equals twice the number

of edges of 5.

Corollary: Total Degree of a G

The totzl degree of a graph is =ven.

raph

Example 2

Either draw a graph with the specified

properties or show that no such graph exists.

a] A graph with four vertices of degre=s

1,1, 2 and 3.
b} A graph with four wertices of degraes
1,1,3 and 3.
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Corollary: Vertices of Odd Degree

In any graph there is an =ven number of

vertices of odd degre=.

Example 3

In @ group of 15 people, is it possible for sach

person to have exacthy 3 frisnds?

Simple Graphs

A simple graph is 2 graph that does not have any

loops or paralle] =dges.
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Example 4
Either draw a graph with the sp=cified

properties or explain why no such graph exists.

A simple graph with six edges and all vertices of
degres 3.

/

AN

Complete Graphs

Let 11 b= & positive integer. A complete graph on
1 vertices, denoted K, is 2 simple graph with 1
vertices and =xactly one edge connecting =ach
pair of distinct vertices.

Trees
& mraph is said to be circuit-free if it has no
circuits.
& gragh is called a tre= iff it is circuit-free and
connected.
A trivial tree is 3 graph that consists of a single
VETtEx,

A gragh is lled a forest iff it is circuit-free and
riot connected.
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Parse Trees

In the study of grammiars, trees are often used

to show the derivation of grammaticlly correct
sentences from certain basic rules. Such trees

are called syntactic derivation trees or parse
trees.

Example 5

A wery small subset of Erglizh zrammar, far smmale,

specifies thak

1. asentence can be produced by writing first 8 noun
phrmse and then a werd phrss;

2. anoun phmse can be produced by writing an article

and then & nown;
3. &noun phrss can also be produced by writing an

srticle, then an sdectiee, and then B noun;
4. awerb phrase <an be produced by writing a vern

snd than & nown phrase.

Example 5

The derivation of the sentence “The young man

caught the ball™ from the abowe rules is

described by the tree shiown below.
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Trees in Linguistics

In the study of Iin5ui:ti|3._. Fyniax refers to the
gra mmatical struchore of sentences, and semantcs
refers to the meanings of wonss and their

internaiations.
A sentence can be syninctically comect but s=mantically

incarrect, as in the nonsensical sentence “The young
ball gt the man,” which can be derived fram the

rules given an the previous slides.
& sentence can contain syrtactic =rrors but not

semantic ores, &5, for instance, whena twa-year-old
chikd says, "Me hungry!

Lemma

Any tre= that has more than one vertex has at

least one vertex of degres= 1.

Characterizing Trees

Let T be a tree.

& wertex of degree 1in T iz called a l=af jora

terminal werbex).

& wert=x of degree greater than 1in T is called

an intzrnal vertex (or a branch wertex).
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Theorems

Far ary positive integer i, any tree with 11

verticas has 1 — 1 edges.

For any positive integer 1, if § is 2 connected

graph with f vertices and A — 1 edges, then 7 is
@ tres.

Corollary

If  is any graph with 11 vertices and 1 edges

[where M and 11 are positive integers] and
M = n, than 7 has a circwit.

Example &

A connected graph has twelve wertices and

eleven edges. Does it have 3 vertex of degree 17
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